Module opshin.compiler
Expand source code
import copy
from uplc.ast import data_from_cbor
from .compiler_config import DEFAULT_CONFIG
from .optimize.optimize_const_folding import OptimizeConstantFolding
from .optimize.optimize_remove_comments import OptimizeRemoveDeadconstants
from .rewrite.rewrite_augassign import RewriteAugAssign
from .rewrite.rewrite_cast_condition import RewriteConditions
from .rewrite.rewrite_comparison_chaining import RewriteComparisonChaining
from .rewrite.rewrite_empty_dicts import RewriteEmptyDicts
from .rewrite.rewrite_empty_lists import RewriteEmptyLists
from .rewrite.rewrite_forbidden_overwrites import RewriteForbiddenOverwrites
from .rewrite.rewrite_forbidden_return import RewriteForbiddenReturn
from .rewrite.rewrite_import import RewriteImport
from .rewrite.rewrite_import_dataclasses import RewriteImportDataclasses
from .rewrite.rewrite_import_hashlib import RewriteImportHashlib
from .rewrite.rewrite_import_integrity_check import RewriteImportIntegrityCheck
from .rewrite.rewrite_import_plutusdata import RewriteImportPlutusData
from .rewrite.rewrite_import_typing import RewriteImportTyping
from .rewrite.rewrite_import_uplc_builtins import RewriteImportUPLCBuiltins
from .rewrite.rewrite_inject_builtins import RewriteInjectBuiltins
from .rewrite.rewrite_inject_builtin_constr import RewriteInjectBuiltinsConstr
from .rewrite.rewrite_orig_name import RewriteOrigName
from .rewrite.rewrite_remove_type_stuff import RewriteRemoveTypeStuff
from .rewrite.rewrite_scoping import RewriteScoping
from .rewrite.rewrite_subscript38 import RewriteSubscript38
from .rewrite.rewrite_tuple_assign import RewriteTupleAssign
from .optimize.optimize_remove_pass import OptimizeRemovePass
from .optimize.optimize_remove_deadvars import OptimizeRemoveDeadvars, NameLoadCollector
from .type_inference import *
from .util import (
CompilingNodeTransformer,
NoOp,
)
from .typed_ast import (
transform_ext_params_map,
transform_output_map,
RawPlutoExpr,
)
BoolOpMap = {
And: plt.And,
Or: plt.Or,
}
def rec_constant_map_data(c):
if isinstance(c, bool):
return uplc.PlutusInteger(int(c))
if isinstance(c, int):
return uplc.PlutusInteger(c)
if isinstance(c, type(None)):
return uplc.PlutusConstr(0, [])
if isinstance(c, bytes):
return uplc.PlutusByteString(c)
if isinstance(c, str):
return uplc.PlutusByteString(c.encode())
if isinstance(c, list):
return uplc.PlutusList([rec_constant_map_data(ce) for ce in c])
if isinstance(c, dict):
return uplc.PlutusMap(
dict(
zip(
(rec_constant_map_data(ce) for ce in c.keys()),
(rec_constant_map_data(ce) for ce in c.values()),
)
)
)
raise NotImplementedError(f"Unsupported constant type {type(c)}")
def rec_constant_map(c):
if isinstance(c, bool):
return uplc.BuiltinBool(c)
if isinstance(c, int):
return uplc.BuiltinInteger(c)
if isinstance(c, type(None)):
return uplc.BuiltinUnit()
if isinstance(c, bytes):
return uplc.BuiltinByteString(c)
if isinstance(c, str):
return uplc.BuiltinString(c)
if isinstance(c, list):
return uplc.BuiltinList([rec_constant_map(ce) for ce in c])
if isinstance(c, dict):
return uplc.BuiltinList(
[
uplc.BuiltinPair(*p)
for p in zip(
(rec_constant_map_data(ce) for ce in c.keys()),
(rec_constant_map_data(ce) for ce in c.values()),
)
]
)
if isinstance(c, PlutusData):
return data_from_cbor(c.to_cbor())
raise NotImplementedError(f"Unsupported constant type {type(c)}")
def wrap_validator_double_function(x: plt.AST, pass_through: int = 0):
"""
Wraps the validator function to enable a double function as minting script
pass_through defines how many parameters x would normally take and should be passed through to x
"""
return OLambda(
[f"v{i}" for i in range(pass_through)] + ["a0", "a1"],
OLet(
[("p", plt.Apply(x, *(OVar(f"v{i}") for i in range(pass_through))))],
plt.Ite(
# if the second argument has constructor 0 = script context
plt.DelayedChooseData(
OVar("a1"),
plt.EqualsInteger(plt.Constructor(OVar("a1")), plt.Integer(0)),
plt.Bool(False),
plt.Bool(False),
plt.Bool(False),
plt.Bool(False),
),
# call the validator with a0, a1, and plug in "Nothing" for data
plt.Apply(
OVar("p"),
plt.UPLCConstant(uplc.PlutusConstr(6, [])),
OVar("a0"),
OVar("a1"),
),
# else call the validator with a0, a1 and return (now partially bound)
plt.Apply(OVar("p"), OVar("a0"), OVar("a1")),
),
),
)
CallAST = typing.Callable[[plt.AST], plt.AST]
class PlutoCompiler(CompilingNodeTransformer):
"""
Expects a TypedAST and returns UPLC/Pluto like code
"""
step = "Compiling python statements to UPLC"
def __init__(self, force_three_params=False, validator_function_name="validator"):
# parameters
self.force_three_params = force_three_params
self.validator_function_name = validator_function_name
# marked knowledge during compilation
self.current_function_typ: typing.List[FunctionType] = []
def visit_sequence(self, node_seq: typing.List[typedstmt]) -> CallAST:
def g(s: plt.AST):
for n in reversed(node_seq):
compiled_stmt = self.visit(n)
s = compiled_stmt(s)
return s
return g
def visit_BinOp(self, node: TypedBinOp) -> plt.AST:
op = node.left.typ.binop(node.op, node.right)
return plt.Apply(
op,
self.visit(node.left),
self.visit(node.right),
)
def visit_BoolOp(self, node: TypedBoolOp) -> plt.AST:
op = BoolOpMap.get(type(node.op))
assert len(node.values) >= 2, "Need to compare at least to values"
ops = op(
self.visit(node.values[0]),
self.visit(node.values[1]),
)
for v in node.values[2:]:
ops = op(ops, self.visit(v))
return ops
def visit_UnaryOp(self, node: TypedUnaryOp) -> plt.AST:
op = node.operand.typ.unop(node.op)
return plt.Apply(
op,
self.visit(node.operand),
)
def visit_Compare(self, node: TypedCompare) -> plt.AST:
assert len(node.ops) == 1, "Only single comparisons are supported"
assert len(node.comparators) == 1, "Only single comparisons are supported"
cmpop = node.ops[0]
comparator = node.comparators[0].typ
op = node.left.typ.cmp(cmpop, comparator)
return plt.Apply(
op,
self.visit(node.left),
self.visit(node.comparators[0]),
)
def visit_Module(self, node: TypedModule) -> plt.AST:
# extract actually read variables by each function
if self.validator_function_name is not None:
# for validators find main function
# TODO can use more sophisiticated procedure here i.e. functions marked by comment
main_fun: typing.Optional[InstanceType] = None
for s in node.body:
if (
isinstance(s, FunctionDef)
and s.orig_name == self.validator_function_name
):
main_fun = s
assert (
main_fun is not None
), f"Could not find function named {self.validator_function_name}"
main_fun_typ: FunctionType = main_fun.typ.typ
assert isinstance(
main_fun_typ, FunctionType
), f"Variable named {self.validator_function_name} is not of type function"
# check if this is a contract written to double function
enable_double_func_mint_spend = False
if len(main_fun_typ.argtyps) >= 3 and self.force_three_params:
# check if is possible
second_last_arg = main_fun_typ.argtyps[-2]
assert isinstance(
second_last_arg, InstanceType
), "Can not pass Class into validator"
if isinstance(second_last_arg.typ, UnionType):
possible_types = second_last_arg.typ.typs
else:
possible_types = [second_last_arg.typ]
if any(isinstance(t, UnitType) for t in possible_types):
OPSHIN_LOGGER.warning(
"The redeemer is annotated to be 'None'. This value is usually encoded in PlutusData with constructor id 0 and no fields. If you want the script to double function as minting and spending script, annotate the second argument with 'NoRedeemer'."
)
enable_double_func_mint_spend = not any(
(isinstance(t, RecordType) and t.record.constructor == 0)
or isinstance(t, UnitType)
for t in possible_types
)
if not enable_double_func_mint_spend:
OPSHIN_LOGGER.warning(
"The second argument to the validator function potentially has constructor id 0. The validator will not be able to double function as minting script and spending script."
)
body = node.body + (
[
TypedReturn(
TypedCall(
func=Name(
id=main_fun.name,
typ=InstanceType(main_fun_typ),
ctx=Load(),
),
typ=main_fun_typ.rettyp,
args=[
RawPlutoExpr(
expr=transform_ext_params_map(a)(
OVar(f"val_param{i}")
),
typ=a,
)
for i, a in enumerate(main_fun_typ.argtyps)
],
)
)
]
)
self.current_function_typ.append(FunctionType([], InstanceType(AnyType())))
name_load_visitor = NameLoadCollector()
name_load_visitor.visit(node)
all_vs = sorted(set(all_vars(node)) | set(name_load_visitor.loaded.keys()))
# write all variables that are ever read
# once at the beginning so that we can always access them (only potentially causing a nameerror at runtime)
validator = SafeOLambda(
[f"val_param{i}" for i, _ in enumerate(main_fun_typ.argtyps)],
plt.Let(
[
(
x,
plt.Delay(
plt.TraceError(f"NameError: {map_to_orig_name(x)}")
),
)
for x in all_vs
],
self.visit_sequence(body)(
plt.ConstrData(plt.Integer(0), plt.EmptyDataList())
),
),
)
self.current_function_typ.pop()
if enable_double_func_mint_spend:
validator = wrap_validator_double_function(
validator, pass_through=len(main_fun_typ.argtyps) - 3
)
elif self.force_three_params:
# Error if the double function is enforced but not possible
raise RuntimeError(
"The contract can not always detect if it was passed three or two parameters on-chain."
)
else:
name_load_visitor = NameLoadCollector()
name_load_visitor.visit(node)
all_vs = sorted(set(all_vars(node)) | set(name_load_visitor.loaded.keys()))
body = node.body
# write all variables that are ever read
# once at the beginning so that we can always access them (only potentially causing a nameerror at runtime)
validator = plt.Let(
[
(
x,
plt.Delay(plt.TraceError(f"NameError: {map_to_orig_name(x)}")),
)
for x in all_vs
],
self.visit_sequence(body)(
plt.ConstrData(plt.Integer(0), plt.EmptyDataList())
),
)
cp = plt.Program((1, 0, 0), validator)
return cp
def visit_Constant(self, node: TypedConstant) -> plt.AST:
if isinstance(node.value, bytes) and node.value != b"":
try:
bytes.fromhex(node.value.decode())
except ValueError:
pass
else:
OPSHIN_LOGGER.warning(
f"The string {node.value} looks like it is supposed to be a hex-encoded bytestring but is actually utf8-encoded. Try using `bytes.fromhex('{node.value.decode()}')` instead."
)
plt_val = plt.UPLCConstant(rec_constant_map(node.value))
return plt_val
def visit_NoneType(self, _: typing.Optional[typing.Any]) -> plt.AST:
return plt.Unit()
def visit_Assign(self, node: TypedAssign) -> CallAST:
assert (
len(node.targets) == 1
), "Assignments to more than one variable not supported yet"
assert isinstance(
node.targets[0], Name
), "Assignments to other things then names are not supported"
compiled_e = self.visit(node.value)
varname = node.targets[0].id
# first evaluate the term, then wrap in a delay
return lambda x: plt.Let(
[
(opshin_name_scheme_compatible_varname(varname), compiled_e),
(varname, plt.Delay(OVar(varname))),
],
x,
)
def visit_AnnAssign(self, node: AnnAssign) -> CallAST:
assert isinstance(
node.target, Name
), "Assignments to other things then names are not supported"
assert isinstance(
node.target.typ, InstanceType
), "Can only assign instances to instances"
val = self.visit(node.value)
if isinstance(node.value.typ, InstanceType) and isinstance(
node.value.typ.typ, AnyType
):
# we need to map this as it will originate from PlutusData
# AnyType is the only type other than the builtin itself that can be cast to builtin values
val = transform_ext_params_map(node.target.typ)(val)
if isinstance(node.target.typ, InstanceType) and isinstance(
node.target.typ.typ, AnyType
):
# we need to map this back as it will be treated as PlutusData
# AnyType is the only type other than the builtin itself that can be cast to from builtin values
val = transform_output_map(node.value.typ)(val)
return lambda x: plt.Let(
[
(opshin_name_scheme_compatible_varname(node.target.id), val),
(node.target.id, plt.Delay(OVar(node.target.id))),
],
x,
)
def visit_Name(self, node: TypedName) -> plt.AST:
# depending on load or store context, return the value of the variable or its name
if not isinstance(node.ctx, Load):
raise NotImplementedError(f"Context {node.ctx} not supported")
if isinstance(node.typ, ClassType):
# if this is not an instance but a class, call the constructor
return node.typ.constr()
if hasattr(node, "is_wrapped") and node.is_wrapped:
return transform_ext_params_map(node.typ)(plt.Force(plt.Var(node.id)))
return plt.Force(plt.Var(node.id))
def visit_Expr(self, node: TypedExpr) -> CallAST:
# we exploit UPLCs eager evaluation here
# the expression is computed even though its value is eventually discarded
# Note this really only makes sense for Trace
# we use an invalid name here to avoid conflicts
return lambda x: plt.Apply(OLambda(["0"], x), self.visit(node.value))
def visit_Call(self, node: TypedCall) -> plt.AST:
# compiled_args = " ".join(f"({self.visit(a)} {STATEMONAD})" for a in node.args)
# return rf"(\{STATEMONAD} -> ({self.visit(node.func)} {compiled_args})"
# TODO function is actually not of type polymorphic function type here anymore
if isinstance(node.func.typ, PolymorphicFunctionInstanceType):
# edge case for weird builtins that are polymorphic
func_plt = force_params(
node.func.typ.polymorphic_function.impl_from_args(
node.func.typ.typ.argtyps
)
)
bind_self = None
else:
assert isinstance(node.func.typ, InstanceType) and isinstance(
node.func.typ.typ, FunctionType
)
func_plt = self.visit(node.func)
bind_self = node.func.typ.typ.bind_self
bound_vs = sorted(list(node.func.typ.typ.bound_vars.keys()))
args = []
for i, (a, t) in enumerate(zip(node.args, node.func.typ.typ.argtyps)):
# now impl_from_args has been chosen, skip type arg
if (
hasattr(node.func, "orig_id")
and node.func.orig_id == "isinstance"
and i == 1
):
continue
assert isinstance(t, InstanceType)
# pass in all arguments evaluated with the statemonad
a_int = self.visit(a)
if isinstance(t.typ, AnyType) or isinstance(t.typ, UnionType):
# if the function expects input of generic type data, wrap data before passing it inside
a_int = transform_output_map(a.typ)(a_int)
args.append(a_int)
# First assign to let to ensure that the arguments are evaluated before the call, but need to delay
# as this is a variable assignment
# Also bring all states of variables read inside the function into scope / update with value in current state
# before call to simulate statemonad with current state being passed in
return OLet(
[(f"p{i}", a) for i, a in enumerate(args)],
SafeApply(
func_plt,
*([plt.Var(bind_self)] if bind_self is not None else []),
*[plt.Var(n) for n in bound_vs],
*[plt.Delay(OVar(f"p{i}")) for i in range(len(args))],
),
)
def visit_FunctionDef(self, node: TypedFunctionDef) -> CallAST:
body = node.body.copy()
# defaults to returning None if there is no return statement
if node.typ.typ.rettyp.typ == AnyType():
ret_val = plt.ConstrData(plt.Integer(0), plt.EmptyDataList())
else:
ret_val = plt.Unit()
read_vs = sorted(list(node.typ.typ.bound_vars.keys()))
if node.typ.typ.bind_self is not None:
read_vs.insert(0, node.typ.typ.bind_self)
self.current_function_typ.append(node.typ.typ)
compiled_body = self.visit_sequence(body)(ret_val)
self.current_function_typ.pop()
return lambda x: plt.Let(
[
(
node.name,
plt.Delay(
SafeLambda(
read_vs + [a.arg for a in node.args.args],
compiled_body,
)
),
)
],
x,
)
def visit_While(self, node: TypedWhile) -> CallAST:
# the while loop calls itself, updating the values at overwritten names
# by overwriting them with arguments to its self-recall
if node.orelse:
# If there is orelse, transform it to an appended sequence (TODO check if this is correct)
cn = copy(node)
cn.orelse = []
return self.visit_sequence([cn] + node.orelse)
compiled_c = self.visit(node.test)
compiled_s = self.visit_sequence(node.body)
written_vs = written_vars(node)
pwritten_vs = [plt.Var(x) for x in written_vs]
s_fun = lambda x: plt.Lambda(
[opshin_name_scheme_compatible_varname("while")] + written_vs,
plt.Ite(
compiled_c,
compiled_s(
plt.Apply(
OVar("while"),
OVar("while"),
*deepcopy(pwritten_vs),
)
),
x,
),
)
return lambda x: OLet(
[
("adjusted_next", SafeLambda(written_vs, x)),
(
"while",
s_fun(SafeApply(OVar("adjusted_next"), *deepcopy(pwritten_vs))),
),
],
plt.Apply(OVar("while"), OVar("while"), *deepcopy(pwritten_vs)),
)
def visit_For(self, node: TypedFor) -> CallAST:
if node.orelse:
# If there is orelse, transform it to an appended sequence (TODO check if this is correct)
cn = copy(node)
cn.orelse = []
return self.visit_sequence([cn] + node.orelse)
assert isinstance(node.iter.typ, InstanceType)
if isinstance(node.iter.typ.typ, ListType):
assert isinstance(
node.target, Name
), "Can only assign value to singleton element"
compiled_s = self.visit_sequence(node.body)
compiled_iter = self.visit(node.iter)
written_vs = written_vars(node)
pwritten_vs = [plt.Var(x) for x in written_vs]
s_fun = lambda x: plt.Lambda(
[
opshin_name_scheme_compatible_varname("for"),
opshin_name_scheme_compatible_varname("iter"),
]
+ written_vs,
plt.IteNullList(
OVar("iter"),
x,
plt.Let(
[(node.target.id, plt.Delay(plt.HeadList(OVar("iter"))))],
compiled_s(
plt.Apply(
OVar("for"),
OVar("for"),
plt.TailList(OVar("iter")),
*deepcopy(pwritten_vs),
)
),
),
),
)
return lambda x: OLet(
[
("adjusted_next", plt.Lambda([node.target.id] + written_vs, x)),
(
"for",
s_fun(
plt.Apply(
OVar("adjusted_next"),
plt.Var(node.target.id),
*deepcopy(pwritten_vs),
)
),
),
],
plt.Apply(
OVar("for"),
OVar("for"),
compiled_iter,
*deepcopy(pwritten_vs),
),
)
raise NotImplementedError(
"Compilation of for statements for anything but lists not implemented yet"
)
def visit_If(self, node: TypedIf) -> CallAST:
written_vs = written_vars(node)
pwritten_vs = [plt.Var(x) for x in written_vs]
return lambda x: OLet(
[("adjusted_next", SafeLambda(written_vs, x))],
plt.Ite(
self.visit(node.test),
self.visit_sequence(node.body)(
SafeApply(OVar("adjusted_next"), *deepcopy(pwritten_vs))
),
self.visit_sequence(node.orelse)(
SafeApply(OVar("adjusted_next"), *deepcopy(pwritten_vs))
),
),
)
def visit_Return(self, node: TypedReturn) -> CallAST:
value_plt = self.visit(node.value)
assert self.current_function_typ, "Can not handle Return outside of a function"
if isinstance(self.current_function_typ[-1].rettyp.typ, AnyType):
value_plt = transform_output_map(node.value.typ)(value_plt)
return lambda _: value_plt
def visit_Pass(self, node: TypedPass) -> CallAST:
return self.visit_sequence([])
def visit_Subscript(self, node: TypedSubscript) -> plt.AST:
assert isinstance(
node.value.typ, InstanceType
), "Can only access elements of instances, not classes"
if isinstance(node.value.typ.typ, TupleType):
assert isinstance(
node.slice, Constant
), "Only constant index access for tuples is supported"
assert isinstance(
node.slice.value, int
), "Only constant index integer access for tuples is supported"
index = node.slice.value
if index < 0:
index += len(node.value.typ.typ.typs)
assert isinstance(node.ctx, Load), "Tuples are read-only"
return plt.FunctionalTupleAccess(
self.visit(node.value),
index,
len(node.value.typ.typ.typs),
)
if isinstance(node.value.typ.typ, PairType):
assert isinstance(
node.slice, Constant
), "Only constant index access for pairs is supported"
assert isinstance(
node.slice.value, int
), "Only constant index integer access for pairs is supported"
index = node.slice.value
if index < 0:
index += 2
assert isinstance(node.ctx, Load), "Pairs are read-only"
assert (
0 <= index < 2
), f"Pairs only have 2 elements, index should be 0 or 1, is {node.slice.value}"
member_func = plt.FstPair if index == 0 else plt.SndPair
# the content of pairs is always Data, so we need to unwrap
member_typ = node.typ
return transform_ext_params_map(member_typ)(
member_func(
self.visit(node.value),
),
)
if isinstance(node.value.typ.typ, ListType):
if not isinstance(node.slice, Slice):
assert (
node.slice.typ == IntegerInstanceType
), "Only single element list index access supported"
return OLet(
[
(
"l",
self.visit(node.value),
),
(
"raw_i",
self.visit(node.slice),
),
(
"i",
plt.Ite(
plt.LessThanInteger(OVar("raw_i"), plt.Integer(0)),
plt.AddInteger(
OVar("raw_i"), plt.LengthList(OVar("l"))
),
OVar("raw_i"),
),
),
],
plt.IndexAccessList(OVar("l"), OVar("i")),
)
else:
return OLet(
[
(
"xs",
self.visit(node.value),
),
(
"raw_i",
self.visit(node.slice.lower),
),
(
"i",
plt.Ite(
plt.LessThanInteger(OVar("raw_i"), plt.Integer(0)),
plt.AddInteger(
OVar("raw_i"),
plt.LengthList(OVar("xs")),
),
OVar("raw_i"),
),
),
(
"raw_j",
self.visit(node.slice.upper),
),
(
"j",
plt.Ite(
plt.LessThanInteger(OVar("raw_j"), plt.Integer(0)),
plt.AddInteger(
OVar("raw_j"),
plt.LengthList(OVar("xs")),
),
OVar("raw_j"),
),
),
(
"drop",
plt.Ite(
plt.LessThanEqualsInteger(OVar("i"), plt.Integer(0)),
plt.Integer(0),
OVar("i"),
),
),
(
"take",
plt.SubtractInteger(OVar("j"), OVar("drop")),
),
],
plt.Ite(
plt.LessThanEqualsInteger(OVar("j"), OVar("i")),
empty_list(node.value.typ.typ.typ),
plt.SliceList(
OVar("drop"),
OVar("take"),
OVar("xs"),
empty_list(node.value.typ.typ.typ),
),
),
)
elif isinstance(node.value.typ.typ, DictType):
dict_typ = node.value.typ.typ
if not isinstance(node.slice, Slice):
return OLet(
[
(
"key",
self.visit(node.slice),
)
],
transform_ext_params_map(dict_typ.value_typ)(
plt.SndPair(
plt.FindList(
self.visit(node.value),
OLambda(
["x"],
plt.EqualsData(
transform_output_map(dict_typ.key_typ)(
OVar("key")
),
plt.FstPair(OVar("x")),
),
),
plt.TraceError("KeyError"),
)
),
),
)
elif isinstance(node.value.typ.typ, ByteStringType):
if not isinstance(node.slice, Slice):
return OLet(
[
(
"bs",
self.visit(node.value),
),
(
"raw_ix",
self.visit(node.slice),
),
(
"ix",
plt.Ite(
plt.LessThanInteger(OVar("raw_ix"), plt.Integer(0)),
plt.AddInteger(
OVar("raw_ix"),
plt.LengthOfByteString(OVar("bs")),
),
OVar("raw_ix"),
),
),
],
plt.IndexByteString(OVar("bs"), OVar("ix")),
)
elif isinstance(node.slice, Slice):
return OLet(
[
(
"bs",
self.visit(node.value),
),
(
"raw_i",
self.visit(node.slice.lower),
),
(
"i",
plt.Ite(
plt.LessThanInteger(OVar("raw_i"), plt.Integer(0)),
plt.AddInteger(
OVar("raw_i"),
plt.LengthOfByteString(OVar("bs")),
),
OVar("raw_i"),
),
),
(
"raw_j",
self.visit(node.slice.upper),
),
(
"j",
plt.Ite(
plt.LessThanInteger(OVar("raw_j"), plt.Integer(0)),
plt.AddInteger(
OVar("raw_j"),
plt.LengthOfByteString(OVar("bs")),
),
OVar("raw_j"),
),
),
(
"drop",
plt.Ite(
plt.LessThanEqualsInteger(OVar("i"), plt.Integer(0)),
plt.Integer(0),
OVar("i"),
),
),
(
"take",
plt.SubtractInteger(OVar("j"), OVar("drop")),
),
],
plt.Ite(
plt.LessThanEqualsInteger(OVar("j"), OVar("i")),
plt.ByteString(b""),
plt.SliceByteString(
OVar("drop"),
OVar("take"),
OVar("bs"),
),
),
)
raise NotImplementedError(
f'Could not implement subscript "{node.slice}" of "{node.value}"'
)
def visit_Tuple(self, node: TypedTuple) -> plt.AST:
return plt.FunctionalTuple(*(self.visit(e) for e in node.elts))
def visit_ClassDef(self, node: TypedClassDef) -> CallAST:
return lambda x: plt.Let([(node.name, plt.Delay(node.class_typ.constr()))], x)
def visit_Attribute(self, node: TypedAttribute) -> plt.AST:
assert isinstance(
node.value.typ, InstanceType
), "Can only access attributes of instances"
obj = self.visit(node.value)
attr = node.value.typ.attribute(node.attr)
return plt.Apply(attr, obj)
def visit_Assert(self, node: TypedAssert) -> CallAST:
return lambda x: plt.Ite(
self.visit(node.test),
x,
plt.Apply(
plt.Error(),
(
plt.Trace(self.visit(node.msg), plt.Unit())
if node.msg is not None
else plt.Unit()
),
),
)
def visit_RawPlutoExpr(self, node: RawPlutoExpr) -> plt.AST:
return node.expr
def visit_List(self, node: TypedList) -> plt.AST:
assert isinstance(node.typ, InstanceType)
assert isinstance(node.typ.typ, ListType)
l = empty_list(node.typ.typ.typ)
for e in reversed(node.elts):
l = plt.MkCons(self.visit(e), l)
return l
def visit_Dict(self, node: TypedDict) -> plt.AST:
assert isinstance(node.typ, InstanceType)
assert isinstance(node.typ.typ, DictType)
key_type = node.typ.typ.key_typ
value_type = node.typ.typ.value_typ
l = plt.EmptyDataPairList()
for k, v in zip(node.keys, node.values):
l = plt.MkCons(
plt.MkPairData(
transform_output_map(key_type)(
self.visit(k),
),
transform_output_map(value_type)(
self.visit(v),
),
),
l,
)
return l
def visit_IfExp(self, node: TypedIfExp) -> plt.AST:
if isinstance(node.typ.typ, UnionType):
body = self.visit(node.body)
orelse = self.visit(node.orelse)
if not isinstance(node.body.typ, UnionType):
body = transform_output_map(node.body.typ)(body)
if not isinstance(node.orelse.typ, UnionType):
orelse = transform_output_map(node.orelse.typ)(orelse)
return plt.Ite(self.visit(node.test), body, orelse)
return plt.Ite(
self.visit(node.test),
self.visit(node.body),
self.visit(node.orelse),
)
def visit_ListComp(self, node: TypedListComp) -> plt.AST:
assert len(node.generators) == 1, "Currently only one generator supported"
gen = node.generators[0]
assert isinstance(gen.iter.typ, InstanceType), "Only lists are valid generators"
assert isinstance(gen.iter.typ.typ, ListType), "Only lists are valid generators"
assert isinstance(
gen.target, Name
), "Can only assign value to singleton element"
lst = self.visit(gen.iter)
ifs = None
for ifexpr in gen.ifs:
if ifs is None:
ifs = self.visit(ifexpr)
else:
ifs = plt.And(ifs, self.visit(ifexpr))
map_fun = OLambda(
["x"],
plt.Let(
[(gen.target.id, plt.Delay(OVar("x")))],
self.visit(node.elt),
),
)
empty_list_con = empty_list(node.elt.typ)
if ifs is not None:
filter_fun = OLambda(
["x"],
plt.Let(
[(gen.target.id, plt.Delay(OVar("x")))],
ifs,
),
)
return plt.MapFilterList(
lst,
filter_fun,
map_fun,
empty_list_con,
)
else:
return plt.MapList(
lst,
map_fun,
empty_list_con,
)
def visit_DictComp(self, node: TypedDictComp) -> plt.AST:
assert len(node.generators) == 1, "Currently only one generator supported"
gen = node.generators[0]
assert isinstance(gen.iter.typ, InstanceType), "Only lists are valid generators"
assert isinstance(gen.iter.typ.typ, ListType), "Only lists are valid generators"
assert isinstance(
gen.target, Name
), "Can only assign value to singleton element"
lst = self.visit(gen.iter)
ifs = None
for ifexpr in gen.ifs:
if ifs is None:
ifs = self.visit(ifexpr)
else:
ifs = plt.And(ifs, self.visit(ifexpr))
map_fun = OLambda(
["x"],
plt.Let(
[(gen.target.id, plt.Delay(OVar("x")))],
plt.MkPairData(
transform_output_map(node.key.typ)(
self.visit(node.key),
),
transform_output_map(node.value.typ)(
self.visit(node.value),
),
),
),
)
empty_list_con = plt.EmptyDataPairList()
if ifs is not None:
filter_fun = OLambda(
["x"],
plt.Let(
[(gen.target.id, plt.Delay(OVar("x")))],
ifs,
),
)
return plt.MapFilterList(
lst,
filter_fun,
map_fun,
empty_list_con,
)
else:
return plt.MapList(
lst,
map_fun,
empty_list_con,
)
def visit_FormattedValue(self, node: TypedFormattedValue) -> plt.AST:
return plt.Apply(
node.value.typ.stringify(),
self.visit(node.value),
)
def visit_JoinedStr(self, node: TypedJoinedStr) -> plt.AST:
joined_str = plt.Text("")
for v in reversed(node.values):
joined_str = plt.AppendString(self.visit(v), joined_str)
return joined_str
def generic_visit(self, node: AST) -> plt.AST:
raise NotImplementedError(f"Can not compile {node}")
def compile(
prog: AST,
filename=None,
validator_function_name="validator",
config=DEFAULT_CONFIG,
) -> plt.Program:
compile_pipeline = [
# Important to call this one first - it imports all further files
RewriteImport(filename=filename),
# Rewrites that simplify the python code
RewriteForbiddenReturn(),
OptimizeConstantFolding() if config.constant_folding else NoOp(),
RewriteSubscript38(),
RewriteAugAssign(),
RewriteComparisonChaining(),
RewriteTupleAssign(),
RewriteImportIntegrityCheck(),
RewriteImportPlutusData(),
RewriteImportHashlib(),
RewriteImportTyping(),
RewriteForbiddenOverwrites(),
RewriteImportDataclasses(),
RewriteInjectBuiltins(),
RewriteConditions(),
# Save the original names of variables
RewriteOrigName(),
RewriteScoping(),
# The type inference needs to be run after complex python operations were rewritten
AggressiveTypeInferencer(config.allow_isinstance_anything),
# Rewrites that circumvent the type inference or use its results
RewriteEmptyLists(),
RewriteEmptyDicts(),
RewriteImportUPLCBuiltins(),
RewriteInjectBuiltinsConstr(),
RewriteRemoveTypeStuff(),
# Apply optimizations
OptimizeRemoveDeadvars() if config.remove_dead_code else NoOp(),
OptimizeRemoveDeadconstants() if config.remove_dead_code else NoOp(),
OptimizeRemovePass(),
]
for s in compile_pipeline:
prog = s.visit(prog)
prog = custom_fix_missing_locations(prog)
# the compiler runs last
s = PlutoCompiler(
force_three_params=config.force_three_params,
validator_function_name=validator_function_name,
)
prog = s.visit(prog)
return prog
Functions
def compile(prog: ast.AST, filename=None, validator_function_name='validator', config=CompilationConfig(compress_patterns=True, iterative_unfold_patterns=False, constant_index_access_list=True, constant_folding=False, allow_isinstance_anything=False, force_three_params=False, remove_dead_code=True)) ‑> pluthon.pluthon_ast.Program
def rec_constant_map(c)
def rec_constant_map_data(c)
def wrap_validator_double_function(x: pluthon.pluthon_ast.AST, pass_through: int = 0)
-
Wraps the validator function to enable a double function as minting script
pass_through defines how many parameters x would normally take and should be passed through to x
Classes
class PlutoCompiler (force_three_params=False, validator_function_name='validator')
-
Expects a TypedAST and returns UPLC/Pluto like code
Expand source code
class PlutoCompiler(CompilingNodeTransformer): """ Expects a TypedAST and returns UPLC/Pluto like code """ step = "Compiling python statements to UPLC" def __init__(self, force_three_params=False, validator_function_name="validator"): # parameters self.force_three_params = force_three_params self.validator_function_name = validator_function_name # marked knowledge during compilation self.current_function_typ: typing.List[FunctionType] = [] def visit_sequence(self, node_seq: typing.List[typedstmt]) -> CallAST: def g(s: plt.AST): for n in reversed(node_seq): compiled_stmt = self.visit(n) s = compiled_stmt(s) return s return g def visit_BinOp(self, node: TypedBinOp) -> plt.AST: op = node.left.typ.binop(node.op, node.right) return plt.Apply( op, self.visit(node.left), self.visit(node.right), ) def visit_BoolOp(self, node: TypedBoolOp) -> plt.AST: op = BoolOpMap.get(type(node.op)) assert len(node.values) >= 2, "Need to compare at least to values" ops = op( self.visit(node.values[0]), self.visit(node.values[1]), ) for v in node.values[2:]: ops = op(ops, self.visit(v)) return ops def visit_UnaryOp(self, node: TypedUnaryOp) -> plt.AST: op = node.operand.typ.unop(node.op) return plt.Apply( op, self.visit(node.operand), ) def visit_Compare(self, node: TypedCompare) -> plt.AST: assert len(node.ops) == 1, "Only single comparisons are supported" assert len(node.comparators) == 1, "Only single comparisons are supported" cmpop = node.ops[0] comparator = node.comparators[0].typ op = node.left.typ.cmp(cmpop, comparator) return plt.Apply( op, self.visit(node.left), self.visit(node.comparators[0]), ) def visit_Module(self, node: TypedModule) -> plt.AST: # extract actually read variables by each function if self.validator_function_name is not None: # for validators find main function # TODO can use more sophisiticated procedure here i.e. functions marked by comment main_fun: typing.Optional[InstanceType] = None for s in node.body: if ( isinstance(s, FunctionDef) and s.orig_name == self.validator_function_name ): main_fun = s assert ( main_fun is not None ), f"Could not find function named {self.validator_function_name}" main_fun_typ: FunctionType = main_fun.typ.typ assert isinstance( main_fun_typ, FunctionType ), f"Variable named {self.validator_function_name} is not of type function" # check if this is a contract written to double function enable_double_func_mint_spend = False if len(main_fun_typ.argtyps) >= 3 and self.force_three_params: # check if is possible second_last_arg = main_fun_typ.argtyps[-2] assert isinstance( second_last_arg, InstanceType ), "Can not pass Class into validator" if isinstance(second_last_arg.typ, UnionType): possible_types = second_last_arg.typ.typs else: possible_types = [second_last_arg.typ] if any(isinstance(t, UnitType) for t in possible_types): OPSHIN_LOGGER.warning( "The redeemer is annotated to be 'None'. This value is usually encoded in PlutusData with constructor id 0 and no fields. If you want the script to double function as minting and spending script, annotate the second argument with 'NoRedeemer'." ) enable_double_func_mint_spend = not any( (isinstance(t, RecordType) and t.record.constructor == 0) or isinstance(t, UnitType) for t in possible_types ) if not enable_double_func_mint_spend: OPSHIN_LOGGER.warning( "The second argument to the validator function potentially has constructor id 0. The validator will not be able to double function as minting script and spending script." ) body = node.body + ( [ TypedReturn( TypedCall( func=Name( id=main_fun.name, typ=InstanceType(main_fun_typ), ctx=Load(), ), typ=main_fun_typ.rettyp, args=[ RawPlutoExpr( expr=transform_ext_params_map(a)( OVar(f"val_param{i}") ), typ=a, ) for i, a in enumerate(main_fun_typ.argtyps) ], ) ) ] ) self.current_function_typ.append(FunctionType([], InstanceType(AnyType()))) name_load_visitor = NameLoadCollector() name_load_visitor.visit(node) all_vs = sorted(set(all_vars(node)) | set(name_load_visitor.loaded.keys())) # write all variables that are ever read # once at the beginning so that we can always access them (only potentially causing a nameerror at runtime) validator = SafeOLambda( [f"val_param{i}" for i, _ in enumerate(main_fun_typ.argtyps)], plt.Let( [ ( x, plt.Delay( plt.TraceError(f"NameError: {map_to_orig_name(x)}") ), ) for x in all_vs ], self.visit_sequence(body)( plt.ConstrData(plt.Integer(0), plt.EmptyDataList()) ), ), ) self.current_function_typ.pop() if enable_double_func_mint_spend: validator = wrap_validator_double_function( validator, pass_through=len(main_fun_typ.argtyps) - 3 ) elif self.force_three_params: # Error if the double function is enforced but not possible raise RuntimeError( "The contract can not always detect if it was passed three or two parameters on-chain." ) else: name_load_visitor = NameLoadCollector() name_load_visitor.visit(node) all_vs = sorted(set(all_vars(node)) | set(name_load_visitor.loaded.keys())) body = node.body # write all variables that are ever read # once at the beginning so that we can always access them (only potentially causing a nameerror at runtime) validator = plt.Let( [ ( x, plt.Delay(plt.TraceError(f"NameError: {map_to_orig_name(x)}")), ) for x in all_vs ], self.visit_sequence(body)( plt.ConstrData(plt.Integer(0), plt.EmptyDataList()) ), ) cp = plt.Program((1, 0, 0), validator) return cp def visit_Constant(self, node: TypedConstant) -> plt.AST: if isinstance(node.value, bytes) and node.value != b"": try: bytes.fromhex(node.value.decode()) except ValueError: pass else: OPSHIN_LOGGER.warning( f"The string {node.value} looks like it is supposed to be a hex-encoded bytestring but is actually utf8-encoded. Try using `bytes.fromhex('{node.value.decode()}')` instead." ) plt_val = plt.UPLCConstant(rec_constant_map(node.value)) return plt_val def visit_NoneType(self, _: typing.Optional[typing.Any]) -> plt.AST: return plt.Unit() def visit_Assign(self, node: TypedAssign) -> CallAST: assert ( len(node.targets) == 1 ), "Assignments to more than one variable not supported yet" assert isinstance( node.targets[0], Name ), "Assignments to other things then names are not supported" compiled_e = self.visit(node.value) varname = node.targets[0].id # first evaluate the term, then wrap in a delay return lambda x: plt.Let( [ (opshin_name_scheme_compatible_varname(varname), compiled_e), (varname, plt.Delay(OVar(varname))), ], x, ) def visit_AnnAssign(self, node: AnnAssign) -> CallAST: assert isinstance( node.target, Name ), "Assignments to other things then names are not supported" assert isinstance( node.target.typ, InstanceType ), "Can only assign instances to instances" val = self.visit(node.value) if isinstance(node.value.typ, InstanceType) and isinstance( node.value.typ.typ, AnyType ): # we need to map this as it will originate from PlutusData # AnyType is the only type other than the builtin itself that can be cast to builtin values val = transform_ext_params_map(node.target.typ)(val) if isinstance(node.target.typ, InstanceType) and isinstance( node.target.typ.typ, AnyType ): # we need to map this back as it will be treated as PlutusData # AnyType is the only type other than the builtin itself that can be cast to from builtin values val = transform_output_map(node.value.typ)(val) return lambda x: plt.Let( [ (opshin_name_scheme_compatible_varname(node.target.id), val), (node.target.id, plt.Delay(OVar(node.target.id))), ], x, ) def visit_Name(self, node: TypedName) -> plt.AST: # depending on load or store context, return the value of the variable or its name if not isinstance(node.ctx, Load): raise NotImplementedError(f"Context {node.ctx} not supported") if isinstance(node.typ, ClassType): # if this is not an instance but a class, call the constructor return node.typ.constr() if hasattr(node, "is_wrapped") and node.is_wrapped: return transform_ext_params_map(node.typ)(plt.Force(plt.Var(node.id))) return plt.Force(plt.Var(node.id)) def visit_Expr(self, node: TypedExpr) -> CallAST: # we exploit UPLCs eager evaluation here # the expression is computed even though its value is eventually discarded # Note this really only makes sense for Trace # we use an invalid name here to avoid conflicts return lambda x: plt.Apply(OLambda(["0"], x), self.visit(node.value)) def visit_Call(self, node: TypedCall) -> plt.AST: # compiled_args = " ".join(f"({self.visit(a)} {STATEMONAD})" for a in node.args) # return rf"(\{STATEMONAD} -> ({self.visit(node.func)} {compiled_args})" # TODO function is actually not of type polymorphic function type here anymore if isinstance(node.func.typ, PolymorphicFunctionInstanceType): # edge case for weird builtins that are polymorphic func_plt = force_params( node.func.typ.polymorphic_function.impl_from_args( node.func.typ.typ.argtyps ) ) bind_self = None else: assert isinstance(node.func.typ, InstanceType) and isinstance( node.func.typ.typ, FunctionType ) func_plt = self.visit(node.func) bind_self = node.func.typ.typ.bind_self bound_vs = sorted(list(node.func.typ.typ.bound_vars.keys())) args = [] for i, (a, t) in enumerate(zip(node.args, node.func.typ.typ.argtyps)): # now impl_from_args has been chosen, skip type arg if ( hasattr(node.func, "orig_id") and node.func.orig_id == "isinstance" and i == 1 ): continue assert isinstance(t, InstanceType) # pass in all arguments evaluated with the statemonad a_int = self.visit(a) if isinstance(t.typ, AnyType) or isinstance(t.typ, UnionType): # if the function expects input of generic type data, wrap data before passing it inside a_int = transform_output_map(a.typ)(a_int) args.append(a_int) # First assign to let to ensure that the arguments are evaluated before the call, but need to delay # as this is a variable assignment # Also bring all states of variables read inside the function into scope / update with value in current state # before call to simulate statemonad with current state being passed in return OLet( [(f"p{i}", a) for i, a in enumerate(args)], SafeApply( func_plt, *([plt.Var(bind_self)] if bind_self is not None else []), *[plt.Var(n) for n in bound_vs], *[plt.Delay(OVar(f"p{i}")) for i in range(len(args))], ), ) def visit_FunctionDef(self, node: TypedFunctionDef) -> CallAST: body = node.body.copy() # defaults to returning None if there is no return statement if node.typ.typ.rettyp.typ == AnyType(): ret_val = plt.ConstrData(plt.Integer(0), plt.EmptyDataList()) else: ret_val = plt.Unit() read_vs = sorted(list(node.typ.typ.bound_vars.keys())) if node.typ.typ.bind_self is not None: read_vs.insert(0, node.typ.typ.bind_self) self.current_function_typ.append(node.typ.typ) compiled_body = self.visit_sequence(body)(ret_val) self.current_function_typ.pop() return lambda x: plt.Let( [ ( node.name, plt.Delay( SafeLambda( read_vs + [a.arg for a in node.args.args], compiled_body, ) ), ) ], x, ) def visit_While(self, node: TypedWhile) -> CallAST: # the while loop calls itself, updating the values at overwritten names # by overwriting them with arguments to its self-recall if node.orelse: # If there is orelse, transform it to an appended sequence (TODO check if this is correct) cn = copy(node) cn.orelse = [] return self.visit_sequence([cn] + node.orelse) compiled_c = self.visit(node.test) compiled_s = self.visit_sequence(node.body) written_vs = written_vars(node) pwritten_vs = [plt.Var(x) for x in written_vs] s_fun = lambda x: plt.Lambda( [opshin_name_scheme_compatible_varname("while")] + written_vs, plt.Ite( compiled_c, compiled_s( plt.Apply( OVar("while"), OVar("while"), *deepcopy(pwritten_vs), ) ), x, ), ) return lambda x: OLet( [ ("adjusted_next", SafeLambda(written_vs, x)), ( "while", s_fun(SafeApply(OVar("adjusted_next"), *deepcopy(pwritten_vs))), ), ], plt.Apply(OVar("while"), OVar("while"), *deepcopy(pwritten_vs)), ) def visit_For(self, node: TypedFor) -> CallAST: if node.orelse: # If there is orelse, transform it to an appended sequence (TODO check if this is correct) cn = copy(node) cn.orelse = [] return self.visit_sequence([cn] + node.orelse) assert isinstance(node.iter.typ, InstanceType) if isinstance(node.iter.typ.typ, ListType): assert isinstance( node.target, Name ), "Can only assign value to singleton element" compiled_s = self.visit_sequence(node.body) compiled_iter = self.visit(node.iter) written_vs = written_vars(node) pwritten_vs = [plt.Var(x) for x in written_vs] s_fun = lambda x: plt.Lambda( [ opshin_name_scheme_compatible_varname("for"), opshin_name_scheme_compatible_varname("iter"), ] + written_vs, plt.IteNullList( OVar("iter"), x, plt.Let( [(node.target.id, plt.Delay(plt.HeadList(OVar("iter"))))], compiled_s( plt.Apply( OVar("for"), OVar("for"), plt.TailList(OVar("iter")), *deepcopy(pwritten_vs), ) ), ), ), ) return lambda x: OLet( [ ("adjusted_next", plt.Lambda([node.target.id] + written_vs, x)), ( "for", s_fun( plt.Apply( OVar("adjusted_next"), plt.Var(node.target.id), *deepcopy(pwritten_vs), ) ), ), ], plt.Apply( OVar("for"), OVar("for"), compiled_iter, *deepcopy(pwritten_vs), ), ) raise NotImplementedError( "Compilation of for statements for anything but lists not implemented yet" ) def visit_If(self, node: TypedIf) -> CallAST: written_vs = written_vars(node) pwritten_vs = [plt.Var(x) for x in written_vs] return lambda x: OLet( [("adjusted_next", SafeLambda(written_vs, x))], plt.Ite( self.visit(node.test), self.visit_sequence(node.body)( SafeApply(OVar("adjusted_next"), *deepcopy(pwritten_vs)) ), self.visit_sequence(node.orelse)( SafeApply(OVar("adjusted_next"), *deepcopy(pwritten_vs)) ), ), ) def visit_Return(self, node: TypedReturn) -> CallAST: value_plt = self.visit(node.value) assert self.current_function_typ, "Can not handle Return outside of a function" if isinstance(self.current_function_typ[-1].rettyp.typ, AnyType): value_plt = transform_output_map(node.value.typ)(value_plt) return lambda _: value_plt def visit_Pass(self, node: TypedPass) -> CallAST: return self.visit_sequence([]) def visit_Subscript(self, node: TypedSubscript) -> plt.AST: assert isinstance( node.value.typ, InstanceType ), "Can only access elements of instances, not classes" if isinstance(node.value.typ.typ, TupleType): assert isinstance( node.slice, Constant ), "Only constant index access for tuples is supported" assert isinstance( node.slice.value, int ), "Only constant index integer access for tuples is supported" index = node.slice.value if index < 0: index += len(node.value.typ.typ.typs) assert isinstance(node.ctx, Load), "Tuples are read-only" return plt.FunctionalTupleAccess( self.visit(node.value), index, len(node.value.typ.typ.typs), ) if isinstance(node.value.typ.typ, PairType): assert isinstance( node.slice, Constant ), "Only constant index access for pairs is supported" assert isinstance( node.slice.value, int ), "Only constant index integer access for pairs is supported" index = node.slice.value if index < 0: index += 2 assert isinstance(node.ctx, Load), "Pairs are read-only" assert ( 0 <= index < 2 ), f"Pairs only have 2 elements, index should be 0 or 1, is {node.slice.value}" member_func = plt.FstPair if index == 0 else plt.SndPair # the content of pairs is always Data, so we need to unwrap member_typ = node.typ return transform_ext_params_map(member_typ)( member_func( self.visit(node.value), ), ) if isinstance(node.value.typ.typ, ListType): if not isinstance(node.slice, Slice): assert ( node.slice.typ == IntegerInstanceType ), "Only single element list index access supported" return OLet( [ ( "l", self.visit(node.value), ), ( "raw_i", self.visit(node.slice), ), ( "i", plt.Ite( plt.LessThanInteger(OVar("raw_i"), plt.Integer(0)), plt.AddInteger( OVar("raw_i"), plt.LengthList(OVar("l")) ), OVar("raw_i"), ), ), ], plt.IndexAccessList(OVar("l"), OVar("i")), ) else: return OLet( [ ( "xs", self.visit(node.value), ), ( "raw_i", self.visit(node.slice.lower), ), ( "i", plt.Ite( plt.LessThanInteger(OVar("raw_i"), plt.Integer(0)), plt.AddInteger( OVar("raw_i"), plt.LengthList(OVar("xs")), ), OVar("raw_i"), ), ), ( "raw_j", self.visit(node.slice.upper), ), ( "j", plt.Ite( plt.LessThanInteger(OVar("raw_j"), plt.Integer(0)), plt.AddInteger( OVar("raw_j"), plt.LengthList(OVar("xs")), ), OVar("raw_j"), ), ), ( "drop", plt.Ite( plt.LessThanEqualsInteger(OVar("i"), plt.Integer(0)), plt.Integer(0), OVar("i"), ), ), ( "take", plt.SubtractInteger(OVar("j"), OVar("drop")), ), ], plt.Ite( plt.LessThanEqualsInteger(OVar("j"), OVar("i")), empty_list(node.value.typ.typ.typ), plt.SliceList( OVar("drop"), OVar("take"), OVar("xs"), empty_list(node.value.typ.typ.typ), ), ), ) elif isinstance(node.value.typ.typ, DictType): dict_typ = node.value.typ.typ if not isinstance(node.slice, Slice): return OLet( [ ( "key", self.visit(node.slice), ) ], transform_ext_params_map(dict_typ.value_typ)( plt.SndPair( plt.FindList( self.visit(node.value), OLambda( ["x"], plt.EqualsData( transform_output_map(dict_typ.key_typ)( OVar("key") ), plt.FstPair(OVar("x")), ), ), plt.TraceError("KeyError"), ) ), ), ) elif isinstance(node.value.typ.typ, ByteStringType): if not isinstance(node.slice, Slice): return OLet( [ ( "bs", self.visit(node.value), ), ( "raw_ix", self.visit(node.slice), ), ( "ix", plt.Ite( plt.LessThanInteger(OVar("raw_ix"), plt.Integer(0)), plt.AddInteger( OVar("raw_ix"), plt.LengthOfByteString(OVar("bs")), ), OVar("raw_ix"), ), ), ], plt.IndexByteString(OVar("bs"), OVar("ix")), ) elif isinstance(node.slice, Slice): return OLet( [ ( "bs", self.visit(node.value), ), ( "raw_i", self.visit(node.slice.lower), ), ( "i", plt.Ite( plt.LessThanInteger(OVar("raw_i"), plt.Integer(0)), plt.AddInteger( OVar("raw_i"), plt.LengthOfByteString(OVar("bs")), ), OVar("raw_i"), ), ), ( "raw_j", self.visit(node.slice.upper), ), ( "j", plt.Ite( plt.LessThanInteger(OVar("raw_j"), plt.Integer(0)), plt.AddInteger( OVar("raw_j"), plt.LengthOfByteString(OVar("bs")), ), OVar("raw_j"), ), ), ( "drop", plt.Ite( plt.LessThanEqualsInteger(OVar("i"), plt.Integer(0)), plt.Integer(0), OVar("i"), ), ), ( "take", plt.SubtractInteger(OVar("j"), OVar("drop")), ), ], plt.Ite( plt.LessThanEqualsInteger(OVar("j"), OVar("i")), plt.ByteString(b""), plt.SliceByteString( OVar("drop"), OVar("take"), OVar("bs"), ), ), ) raise NotImplementedError( f'Could not implement subscript "{node.slice}" of "{node.value}"' ) def visit_Tuple(self, node: TypedTuple) -> plt.AST: return plt.FunctionalTuple(*(self.visit(e) for e in node.elts)) def visit_ClassDef(self, node: TypedClassDef) -> CallAST: return lambda x: plt.Let([(node.name, plt.Delay(node.class_typ.constr()))], x) def visit_Attribute(self, node: TypedAttribute) -> plt.AST: assert isinstance( node.value.typ, InstanceType ), "Can only access attributes of instances" obj = self.visit(node.value) attr = node.value.typ.attribute(node.attr) return plt.Apply(attr, obj) def visit_Assert(self, node: TypedAssert) -> CallAST: return lambda x: plt.Ite( self.visit(node.test), x, plt.Apply( plt.Error(), ( plt.Trace(self.visit(node.msg), plt.Unit()) if node.msg is not None else plt.Unit() ), ), ) def visit_RawPlutoExpr(self, node: RawPlutoExpr) -> plt.AST: return node.expr def visit_List(self, node: TypedList) -> plt.AST: assert isinstance(node.typ, InstanceType) assert isinstance(node.typ.typ, ListType) l = empty_list(node.typ.typ.typ) for e in reversed(node.elts): l = plt.MkCons(self.visit(e), l) return l def visit_Dict(self, node: TypedDict) -> plt.AST: assert isinstance(node.typ, InstanceType) assert isinstance(node.typ.typ, DictType) key_type = node.typ.typ.key_typ value_type = node.typ.typ.value_typ l = plt.EmptyDataPairList() for k, v in zip(node.keys, node.values): l = plt.MkCons( plt.MkPairData( transform_output_map(key_type)( self.visit(k), ), transform_output_map(value_type)( self.visit(v), ), ), l, ) return l def visit_IfExp(self, node: TypedIfExp) -> plt.AST: if isinstance(node.typ.typ, UnionType): body = self.visit(node.body) orelse = self.visit(node.orelse) if not isinstance(node.body.typ, UnionType): body = transform_output_map(node.body.typ)(body) if not isinstance(node.orelse.typ, UnionType): orelse = transform_output_map(node.orelse.typ)(orelse) return plt.Ite(self.visit(node.test), body, orelse) return plt.Ite( self.visit(node.test), self.visit(node.body), self.visit(node.orelse), ) def visit_ListComp(self, node: TypedListComp) -> plt.AST: assert len(node.generators) == 1, "Currently only one generator supported" gen = node.generators[0] assert isinstance(gen.iter.typ, InstanceType), "Only lists are valid generators" assert isinstance(gen.iter.typ.typ, ListType), "Only lists are valid generators" assert isinstance( gen.target, Name ), "Can only assign value to singleton element" lst = self.visit(gen.iter) ifs = None for ifexpr in gen.ifs: if ifs is None: ifs = self.visit(ifexpr) else: ifs = plt.And(ifs, self.visit(ifexpr)) map_fun = OLambda( ["x"], plt.Let( [(gen.target.id, plt.Delay(OVar("x")))], self.visit(node.elt), ), ) empty_list_con = empty_list(node.elt.typ) if ifs is not None: filter_fun = OLambda( ["x"], plt.Let( [(gen.target.id, plt.Delay(OVar("x")))], ifs, ), ) return plt.MapFilterList( lst, filter_fun, map_fun, empty_list_con, ) else: return plt.MapList( lst, map_fun, empty_list_con, ) def visit_DictComp(self, node: TypedDictComp) -> plt.AST: assert len(node.generators) == 1, "Currently only one generator supported" gen = node.generators[0] assert isinstance(gen.iter.typ, InstanceType), "Only lists are valid generators" assert isinstance(gen.iter.typ.typ, ListType), "Only lists are valid generators" assert isinstance( gen.target, Name ), "Can only assign value to singleton element" lst = self.visit(gen.iter) ifs = None for ifexpr in gen.ifs: if ifs is None: ifs = self.visit(ifexpr) else: ifs = plt.And(ifs, self.visit(ifexpr)) map_fun = OLambda( ["x"], plt.Let( [(gen.target.id, plt.Delay(OVar("x")))], plt.MkPairData( transform_output_map(node.key.typ)( self.visit(node.key), ), transform_output_map(node.value.typ)( self.visit(node.value), ), ), ), ) empty_list_con = plt.EmptyDataPairList() if ifs is not None: filter_fun = OLambda( ["x"], plt.Let( [(gen.target.id, plt.Delay(OVar("x")))], ifs, ), ) return plt.MapFilterList( lst, filter_fun, map_fun, empty_list_con, ) else: return plt.MapList( lst, map_fun, empty_list_con, ) def visit_FormattedValue(self, node: TypedFormattedValue) -> plt.AST: return plt.Apply( node.value.typ.stringify(), self.visit(node.value), ) def visit_JoinedStr(self, node: TypedJoinedStr) -> plt.AST: joined_str = plt.Text("") for v in reversed(node.values): joined_str = plt.AppendString(self.visit(v), joined_str) return joined_str def generic_visit(self, node: AST) -> plt.AST: raise NotImplementedError(f"Can not compile {node}")
Ancestors
- CompilingNodeTransformer
- TypedNodeTransformer
- ast.NodeTransformer
- ast.NodeVisitor
Class variables
var step
Methods
def generic_visit(self, node: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Called if no explicit visitor function exists for a node.
def visit(self, node)
-
Inherited from:
CompilingNodeTransformer
.visit
Visit a node.
def visit_AnnAssign(self, node: ast.AnnAssign) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
def visit_Assert(self, node: TypedAssert) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
def visit_Assign(self, node: TypedAssign) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
def visit_Attribute(self, node: TypedAttribute) ‑> pluthon.pluthon_ast.AST
def visit_BinOp(self, node: TypedBinOp) ‑> pluthon.pluthon_ast.AST
def visit_BoolOp(self, node: TypedBoolOp) ‑> pluthon.pluthon_ast.AST
def visit_Call(self, node: TypedCall) ‑> pluthon.pluthon_ast.AST
def visit_ClassDef(self, node: TypedClassDef) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
def visit_Compare(self, node: TypedCompare) ‑> pluthon.pluthon_ast.AST
def visit_Constant(self, node: TypedConstant) ‑> pluthon.pluthon_ast.AST
def visit_Dict(self, node: TypedDict) ‑> pluthon.pluthon_ast.AST
def visit_DictComp(self, node: TypedDictComp) ‑> pluthon.pluthon_ast.AST
def visit_Expr(self, node: TypedExpr) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
def visit_For(self, node: TypedFor) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
def visit_FormattedValue(self, node: TypedFormattedValue) ‑> pluthon.pluthon_ast.AST
def visit_FunctionDef(self, node: TypedFunctionDef) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
def visit_If(self, node: TypedIf) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
def visit_IfExp(self, node: TypedIfExp) ‑> pluthon.pluthon_ast.AST
def visit_JoinedStr(self, node: TypedJoinedStr) ‑> pluthon.pluthon_ast.AST
def visit_List(self, node: TypedList) ‑> pluthon.pluthon_ast.AST
def visit_ListComp(self, node: TypedListComp) ‑> pluthon.pluthon_ast.AST
def visit_Module(self, node: TypedModule) ‑> pluthon.pluthon_ast.AST
def visit_Name(self, node: TypedName) ‑> pluthon.pluthon_ast.AST
def visit_NoneType(self, _: Optional[Any]) ‑> pluthon.pluthon_ast.AST
def visit_Pass(self, node: TypedPass) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
def visit_RawPlutoExpr(self, node: RawPlutoExpr) ‑> pluthon.pluthon_ast.AST
def visit_Return(self, node: TypedReturn) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
def visit_Subscript(self, node: TypedSubscript) ‑> pluthon.pluthon_ast.AST
def visit_Tuple(self, node: TypedTuple) ‑> pluthon.pluthon_ast.AST
def visit_UnaryOp(self, node: TypedUnaryOp) ‑> pluthon.pluthon_ast.AST
def visit_While(self, node: TypedWhile) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]
def visit_sequence(self, node_seq: List[typedstmt]) ‑> Callable[[pluthon.pluthon_ast.AST], pluthon.pluthon_ast.AST]