Module opshin.type_impls
Expand source code
import dataclasses
from typing import Callable
import logging
from ast import *
import itertools
from ordered_set import OrderedSet
import uplc.ast
from .util import *
class TypeInferenceError(AssertionError):
pass
class Type:
def __new__(meta, *args, **kwargs):
klass = super().__new__(meta)
for key in ["constr", "attribute", "cmp", "stringify", "copy_only_attributes"]:
value = getattr(klass, key)
wrapped = patternize(value)
object.__setattr__(klass, key, wrapped)
return klass
def constr_type(self) -> "InstanceType":
"""The type of the constructor for this class"""
raise TypeInferenceError(
f"Object of type {self.__class__} does not have a constructor"
)
def constr(self) -> plt.AST:
"""The constructor for this class"""
raise NotImplementedError(
f"Constructor of {type(self).__name__} not implemented"
)
def attribute_type(self, attr) -> "Type":
"""The types of the named attributes of this class"""
raise TypeInferenceError(
f"Object of type {type(self).__name__} does not have attribute {attr}"
)
def attribute(self, attr) -> plt.AST:
"""The attributes of this class. Needs to be a lambda that expects as first argument the object itself"""
raise NotImplementedError(f"Attribute {attr} not implemented for type {self}")
def cmp(self, op: cmpop, o: "Type") -> plt.AST:
"""The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison."""
raise NotImplementedError(
f"Comparison {type(op).__name__} for {self.__class__.__name__} and {o.__class__.__name__} is not implemented. This is likely intended because it would always evaluate to False."
)
def stringify(self, recursive: bool = False) -> plt.AST:
"""
Returns a stringified version of the object
The recursive parameter informs the method whether it was invoked recursively from another invokation
"""
raise NotImplementedError(f"{type(self).__name__} can not be stringified")
def copy_only_attributes(self) -> plt.AST:
"""
Pluthon function that returns a copy of only the attributes of the object
"""
raise NotImplementedError(f"{type(self).__name__} can not be copied")
def binop_type(self, binop: operator, other: "Type") -> "Type":
"""
Type of a binary operation between self and other.
"""
return FunctionType(
[InstanceType(self), InstanceType(other)],
InstanceType(self._binop_return_type(binop, other)),
)
def _binop_return_type(self, binop: operator, other: "Type") -> "Type":
"""
Return the type of a binary operation between self and other
"""
raise NotImplementedError(
f"{type(self).__name__} does not implement {binop.__class__.__name__}"
)
def binop(self, binop: operator, other: AST) -> plt.AST:
"""
Implements a binary operation between self and other
"""
return OLambda(
["self", "other"],
self._binop_bin_fun(binop, other)(OVar("self"), OVar("other")),
)
def _binop_bin_fun(
self, binop: operator, other: AST
) -> Callable[[plt.AST, plt.AST], plt.AST]:
"""
Returns a binary function that implements the binary operation between self and other.
"""
raise NotImplementedError(
f"{type(self).__name__} can not be used with operation {binop.__class__.__name__}"
)
def unop_type(self, unop: unaryop) -> "Type":
"""
Type of a unary operation on self.
"""
return FunctionType(
[InstanceType(self)],
InstanceType(self._unop_return_type(unop)),
)
def _unop_return_type(self, unop: unaryop) -> "Type":
"""
Return the type of a binary operation between self and other
"""
raise NotImplementedError(
f"{type(self).__name__} does not implement {unop.__class__.__name__}"
)
def unop(self, unop: unaryop) -> plt.AST:
"""
Implements a unary operation on self
"""
return OLambda(
["self"],
self._unop_fun(unop)(OVar("self")),
)
def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]:
"""
Returns a unary function that implements the unary operation on self.
"""
raise NotImplementedError(
f"{type(self).__name__} can not be used with operation {unop.__class__.__name__}"
)
def id_map(self, skip_constructor: bool = False) -> str:
"""
Returns a map from the constructor id to a descriptive typestring
"""
raise NotImplementedError(f"Type {type(self).__name__} does not have a id map")
@dataclass(frozen=True, unsafe_hash=True)
class Record:
name: str
orig_name: str
constructor: int
fields: typing.Union[typing.List[typing.Tuple[str, Type]], frozenlist]
def __post_init__(self):
object.__setattr__(self, "fields", frozenlist(self.fields))
def __ge__(self, other):
if not isinstance(other, Record):
return False
return (
self.constructor == other.constructor
and len(self.fields) == len(other.fields)
and all(a >= b for a, b in zip(self.fields, other.fields))
)
@dataclass(frozen=True, unsafe_hash=True)
class ClassType(Type):
def __ge__(self, other):
"""
Returns whether other can be substituted for this type.
In other words this returns whether the interface of this type is a subset of the interface of other.
Note that this is usually <= and not >=, but this needs to be fixed later.
Produces a partial order on types.
The top element is the most generic type and can not substitute for anything.
The bottom element is the most specific type and can be substituted for anything.
"""
raise NotImplementedError("Comparison between raw classtypes impossible")
def copy_only_attributes(self) -> plt.AST:
"""
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too).
For anything but record types and union types, this is the identity function.
"""
return OLambda(["self"], OVar("self"))
@dataclass(frozen=True, unsafe_hash=True)
class AnyType(ClassType):
"""The top element in the partial order on types (excluding FunctionTypes, which do not compare to anything)"""
def id_map(self, skip_constructor: bool = False) -> str:
return "any"
def attribute_type(self, attr: str) -> Type:
"""The types of the named attributes of this class"""
if attr == "CONSTR_ID":
return IntegerInstanceType
return super().attribute_type(attr)
def attribute(self, attr: str) -> plt.AST:
"""The attributes of this class. Need to be a lambda that expects as first argument the object itself"""
if attr == "CONSTR_ID":
# access to constructor
return OLambda(
["self"],
plt.Constructor(OVar("self")),
)
return super().attribute(attr)
def __ge__(self, other):
return (
isinstance(other, ClassType)
and not isinstance(other, FunctionType)
and not isinstance(other, PolymorphicFunctionType)
)
def cmp(self, op: cmpop, o: "Type") -> plt.AST:
"""The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison."""
# this will reject comparisons that will always be false - most likely due to faults during programming
if (
(isinstance(o, RecordType))
or isinstance(o, UnionType)
or isinstance(o, AnyType)
):
# Note that comparison with Record and UnionType is actually fine because both are Data
if isinstance(op, Eq):
return plt.BuiltIn(uplc.BuiltInFun.EqualsData)
if isinstance(op, NotEq):
return OLambda(
["x", "y"],
plt.Not(
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsData),
OVar("x"),
OVar("y"),
)
),
)
if (
isinstance(o, ListType)
and isinstance(o.typ, InstanceType)
and (o.typ.typ >= self or self >= o.typ.typ)
):
if isinstance(op, In):
return OLambda(
["x", "y"],
plt.AnyList(
OVar("y"),
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsData),
OVar("x"),
),
),
)
if isinstance(op, NotIn):
return OLambda(
["x", "y"],
plt.Not(
plt.AnyList(
OVar("y"),
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsData),
OVar("x"),
),
),
),
)
return super().cmp(op, o)
def stringify(self, recursive: bool = False) -> plt.AST:
OPSHIN_LOGGER.warning(
"Serializing AnyType will result in RawPlutusData (CBOR representation) to be printed without additional type information. Annotate types where possible to avoid this warning."
)
return OLambda(
["self"],
OLet(
[
(
"joinMapList",
OLambda(
["m", "l", "start", "end"],
OLet(
[
(
"g",
plt.RecFun(
OLambda(
["f", "l"],
plt.AppendString(
plt.Apply(
OVar("m"),
plt.HeadList(OVar("l")),
),
OLet(
[
(
"t",
plt.TailList(OVar("l")),
)
],
plt.IteNullList(
OVar("t"),
OVar("end"),
plt.AppendString(
plt.Text(", "),
plt.Apply(
OVar("f"),
OVar("f"),
OVar("t"),
),
),
),
),
),
)
),
)
],
plt.AppendString(
OVar("start"),
plt.IteNullList(
OVar("l"),
OVar("end"),
plt.Apply(
OVar("g"),
OVar("l"),
),
),
),
),
),
),
(
"stringifyPlutusData",
plt.RecFun(
OLambda(
["f", "d"],
plt.DelayedChooseData(
OVar("d"),
OLet(
[
(
"constructor",
plt.FstPair(
plt.UnConstrData(OVar("d"))
),
)
],
plt.Ite(
plt.LessThanInteger(
OVar("constructor"),
plt.Integer(128),
),
plt.ConcatString(
plt.Text("CBORTag("),
plt.Apply(
OVar("f"),
OVar("f"),
plt.IData(
plt.AddInteger(
OVar("constructor"),
plt.Ite(
plt.LessThanInteger(
OVar("constructor"),
plt.Integer(7),
),
plt.Integer(121),
plt.Integer(1280 - 7),
),
)
),
),
plt.Text(", "),
plt.Apply(
OVar("f"),
OVar("f"),
plt.ListData(
plt.SndPair(
plt.UnConstrData(OVar("d"))
)
),
),
plt.Text(")"),
),
plt.ConcatString(
plt.Text("CBORTag(102, "),
plt.Apply(
OVar("f"),
OVar("f"),
plt.ListData(
plt.MkCons(
plt.IData(
OVar("constructor")
),
plt.MkCons(
plt.ListData(
plt.SndPair(
plt.UnConstrData(
OVar("d")
)
)
),
plt.EmptyDataList(),
),
)
),
),
plt.Text(")"),
),
),
),
plt.Apply(
OVar("joinMapList"),
OLambda(
["x"],
plt.ConcatString(
plt.Apply(
OVar("f"),
OVar("f"),
plt.FstPair(OVar("x")),
),
plt.Text(": "),
plt.Apply(
OVar("f"),
OVar("f"),
plt.SndPair(OVar("x")),
),
),
),
plt.UnMapData(OVar("d")),
plt.Text("{"),
plt.Text("}"),
),
plt.Apply(
OVar("joinMapList"),
OLambda(
["x"],
plt.Apply(
OVar("f"),
OVar("f"),
OVar("x"),
),
),
plt.UnListData(OVar("d")),
plt.Text("["),
plt.Text("]"),
),
plt.Apply(
IntegerInstanceType.stringify(recursive=True),
plt.UnIData(OVar("d")),
),
plt.Apply(
ByteStringInstanceType.stringify(
recursive=True
),
plt.UnBData(OVar("d")),
),
),
)
),
),
],
plt.ConcatString(
plt.Text("RawPlutusData(data="),
plt.Apply(OVar("stringifyPlutusData"), OVar("self")),
plt.Text(")"),
),
),
)
@dataclass(frozen=True, unsafe_hash=True)
class AtomicType(ClassType):
def __ge__(self, other):
# Can only substitute for its own type (also subtypes)
return isinstance(other, self.__class__)
@dataclass(frozen=True, unsafe_hash=True)
class RecordType(ClassType):
record: Record
def id_map(self, skip_constructor: bool = False) -> str:
return (
"cons["
+ self.record.orig_name
+ "]("
+ (str(self.record.constructor) if not skip_constructor else "_")
+ ";"
+ ",".join(name + ":" + type.id_map() for name, type in self.record.fields)
+ ")"
)
def constr_type(self) -> "InstanceType":
return InstanceType(
FunctionType(
frozenlist([f[1] for f in self.record.fields]), InstanceType(self)
)
)
def constr(self) -> plt.AST:
# wrap all constructor values to PlutusData
build_constr_params = plt.EmptyDataList()
for n, t in reversed(self.record.fields):
build_constr_params = plt.MkCons(
transform_output_map(t)(plt.Force(OVar(n))), build_constr_params
)
# then build a constr type with this PlutusData
return SafeOLambda(
[n for n, _ in self.record.fields],
plt.ConstrData(plt.Integer(self.record.constructor), build_constr_params),
)
def attribute_type(self, attr: str) -> Type:
"""The types of the named attributes of this class"""
if attr == "CONSTR_ID":
return IntegerInstanceType
for n, t in self.record.fields:
if n == attr:
return t
if attr == "to_cbor":
return InstanceType(FunctionType(frozenlist([]), ByteStringInstanceType))
raise TypeInferenceError(
f"Type {self.record.name} does not have attribute {attr}"
)
def attribute(self, attr: str) -> plt.AST:
"""The attributes of this class. Need to be a lambda that expects as first argument the object itself"""
if attr == "CONSTR_ID":
# access to constructor
return OLambda(
["self"],
plt.Constructor(OVar("self")),
)
if attr in (n for n, t in self.record.fields):
attr_typ = self.attribute_type(attr)
pos = next(i for i, (n, _) in enumerate(self.record.fields) if n == attr)
# access to normal fields
return OLambda(
["self"],
transform_ext_params_map(attr_typ)(
plt.ConstantNthFieldFast(
OVar("self"),
pos,
),
),
)
if attr == "to_cbor":
return OLambda(
["self", "_"],
plt.SerialiseData(
OVar("self"),
),
)
raise NotImplementedError(f"Attribute {attr} not implemented for type {self}")
def cmp(self, op: cmpop, o: "Type") -> plt.AST:
"""The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison."""
# this will reject comparisons that will always be false - most likely due to faults during programming
if (
(
isinstance(o, RecordType)
and (self.record >= o.record or o.record >= self.record)
)
or (
isinstance(o, UnionType) and any(self >= o or self >= o for o in o.typs)
)
or isinstance(o, AnyType)
):
# Note that comparison with AnyType is actually fine because both are Data
if isinstance(op, Eq):
return plt.BuiltIn(uplc.BuiltInFun.EqualsData)
if isinstance(op, NotEq):
return OLambda(
["x", "y"],
plt.Not(
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsData),
OVar("x"),
OVar("y"),
)
),
)
if (
isinstance(o, ListType)
and isinstance(o.typ, InstanceType)
and (o.typ.typ >= self or self >= o.typ.typ)
):
if isinstance(op, In):
return OLambda(
["x", "y"],
plt.AnyList(
OVar("y"),
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsData),
OVar("x"),
),
),
)
if isinstance(op, NotIn):
return OLambda(
["x", "y"],
plt.Not(
plt.AnyList(
OVar("y"),
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsData),
OVar("x"),
),
),
),
)
return super().cmp(op, o)
def __ge__(self, other):
# Can only substitute for its own type, records need to be equal
# if someone wants to be funny, they can implement <= to be true if all fields match up to some point
return isinstance(other, self.__class__) and self.record >= other.record
def stringify(self, recursive: bool = False) -> plt.AST:
"""Returns a stringified version of the object"""
map_fields = plt.Text(")")
if self.record.fields:
# TODO access to fields is a bit inefficient but this is debugging stuff only anyways
pos = len(self.record.fields) - 1
for field_name, field_type in reversed(self.record.fields[1:]):
map_fields = plt.ConcatString(
plt.Text(f", {field_name}="),
plt.Apply(
field_type.stringify(recursive=True),
transform_ext_params_map(field_type)(
plt.ConstantNthFieldFast(OVar("self"), pos)
),
),
map_fields,
)
pos -= 1
map_fields = plt.ConcatString(
plt.Text(f"{self.record.fields[0][0]}="),
plt.Apply(
self.record.fields[0][1].stringify(recursive=True),
transform_ext_params_map(self.record.fields[0][1])(
plt.ConstantNthFieldFast(OVar("self"), pos)
),
),
map_fields,
)
return OLambda(
["self"],
plt.AppendString(plt.Text(f"{self.record.orig_name}("), map_fields),
)
def copy_only_attributes(self) -> plt.AST:
copied_attributes = plt.EmptyDataList()
for attr_name, attr_type in reversed(self.record.fields):
copied_attributes = OLet(
[
("f", plt.HeadList(OVar("fs"))),
("fs", plt.TailList(OVar("fs"))),
],
plt.MkCons(
transform_output_map(attr_type)(
plt.Apply(
attr_type.copy_only_attributes(),
transform_ext_params_map(attr_type)(
OVar("f"),
),
)
),
copied_attributes,
),
)
copied_attributes = OLet(
[("fs", plt.Fields(OVar("self")))],
copied_attributes,
)
return OLambda(
["self"],
plt.ConstrData(
plt.Integer(self.record.constructor),
copied_attributes,
),
)
@dataclass(frozen=True, unsafe_hash=True)
class UnionType(ClassType):
typs: typing.List[RecordType]
def __post_init__(self):
object.__setattr__(self, "typs", frozenlist(self.typs))
def id_map(self, skip_constructor: bool = False) -> str:
return "union<" + ",".join(t.id_map() for t in self.typs) + ">"
def attribute_type(self, attr) -> "Type":
if attr == "CONSTR_ID":
return IntegerInstanceType
# need to have a common field with the same name
if all(attr in (n for n, t in x.record.fields) for x in self.typs):
attr_types = OrderedSet(
t for x in self.typs for n, t in x.record.fields if n == attr
)
for at in attr_types:
# return the maximum element if there is one
if all(at >= at2 for at2 in attr_types):
return at
# return the union type of all possible instantiations if all possible values are record types
if all(
isinstance(at, InstanceType) and isinstance(at.typ, RecordType)
for at in attr_types
) and distinct([at.typ.record.constructor for at in attr_types]):
return InstanceType(
UnionType(frozenlist([at.typ for at in attr_types]))
)
# return Anytype
return InstanceType(AnyType())
if attr == "to_cbor":
return InstanceType(FunctionType(frozenlist([]), ByteStringInstanceType))
raise TypeInferenceError(
f"Can not access attribute {attr} of Union type. Cast to desired type with an 'if isinstance(_, _):' branch."
)
def attribute(self, attr: str) -> plt.AST:
if attr == "CONSTR_ID":
# access to constructor
return OLambda(
["self"],
plt.Constructor(OVar("self")),
)
# iterate through all names/types of the unioned records by position
if any(attr in (n for n, t in r.record.fields) for r in self.typs):
attr_typ = self.attribute_type(attr)
pos_constrs = [
(i, x.record.constructor)
for x in self.typs
for i, (n, t) in enumerate(x.record.fields)
if n == attr
]
pos_constrs = sorted(pos_constrs, key=lambda x: x[0])
pos_constrs = [
(pos, [c[1] for c in constrs])
for (pos, constrs) in itertools.groupby(pos_constrs, key=lambda x: x[0])
]
# largest group last so we save the comparisons for that
pos_constrs = sorted(pos_constrs, key=lambda x: len(x[1]))
# access to normal fields
if not pos_constrs:
pos_decisor = plt.TraceError("Invalid constructor")
else:
pos_decisor = plt.ConstantNthFieldFast(OVar("self"), pos_constrs[-1][0])
pos_constrs = pos_constrs[:-1]
# constr is not needed when there is only one position for all constructors
if not pos_constrs:
return OLambda(
["self"],
transform_ext_params_map(attr_typ)(
pos_decisor,
),
)
for pos, constrs in pos_constrs:
assert constrs, "Found empty constructors for a position"
constr_check = plt.EqualsInteger(
OVar("constr"), plt.Integer(constrs[0])
)
for constr in constrs[1:]:
constr_check = plt.Or(
plt.EqualsInteger(OVar("constr"), plt.Integer(constr)),
constr_check,
)
pos_decisor = plt.Ite(
constr_check,
plt.ConstantNthFieldFast(OVar("self"), pos),
pos_decisor,
)
return OLambda(
["self"],
transform_ext_params_map(attr_typ)(
OLet(
[("constr", plt.Constructor(OVar("self")))],
pos_decisor,
),
),
)
if attr == "to_cbor":
return OLambda(
["self", "_"],
plt.SerialiseData(
OVar("self"),
),
)
raise NotImplementedError(f"Attribute {attr} not implemented for type {self}")
def __ge__(self, other):
if isinstance(other, UnionType):
return all(self >= ot for ot in other.typs)
return any(t >= other for t in self.typs)
def cmp(self, op: cmpop, o: "Type") -> plt.AST:
"""The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison."""
# this will reject comparisons that will always be false - most likely due to faults during programming
# note we require that there is an overlapt between the possible types for unions
if (isinstance(o, RecordType) and any(t >= o or o >= t for t in self.typs)) or (
isinstance(o, UnionType)
and any(t >= ot or t >= ot for t in self.typs for ot in o.typs)
):
if isinstance(op, Eq):
return plt.BuiltIn(uplc.BuiltInFun.EqualsData)
if isinstance(op, NotEq):
return OLambda(
["x", "y"],
plt.Not(
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsData),
OVar("x"),
OVar("y"),
)
),
)
if (
isinstance(o, ListType)
and isinstance(o.typ, InstanceType)
and any(o.typ.typ >= t or t >= o.typ.typ for t in self.typs)
):
if isinstance(op, In):
return OLambda(
["x", "y"],
plt.AnyList(
OVar("y"),
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsData),
OVar("x"),
),
),
)
if isinstance(op, NotIn):
return OLambda(
["x", "y"],
plt.Not(
plt.AnyList(
OVar("y"),
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsData),
OVar("x"),
),
),
),
)
raise NotImplementedError(
f"Can not compare {o} and {self} with operation {op.__class__}. Note that comparisons that always return false are also rejected."
)
def stringify(self, recursive: bool = False) -> plt.AST:
decide_string_func = plt.TraceError("Invalid constructor id in Union")
for t in self.typs:
decide_string_func = plt.Ite(
plt.EqualsInteger(OVar("c"), plt.Integer(t.record.constructor)),
t.stringify(recursive=True),
decide_string_func,
)
return OLambda(
["self"],
OLet(
[("c", plt.Constructor(OVar("self")))],
plt.Apply(decide_string_func, OVar("self")),
),
)
def copy_only_attributes(self) -> plt.AST:
copied_attributes = plt.TraceError(
f"Invalid CONSTR_ID for instance of Union[{', '.join(type(typ).__name__ for typ in self.typs)}]"
)
for typ in self.typs:
copied_attributes = plt.Ite(
plt.EqualsInteger(OVar("constr"), plt.Integer(typ.record.constructor)),
plt.Apply(typ.copy_only_attributes(), OVar("self")),
copied_attributes,
)
return OLambda(
["self"],
OLet(
[("constr", plt.Constructor(OVar("self")))],
copied_attributes,
),
)
@dataclass(frozen=True, unsafe_hash=True)
class TupleType(ClassType):
typs: typing.List[Type]
def __ge__(self, other):
return isinstance(other, TupleType) and all(
t >= ot for t, ot in zip(self.typs, other.typs)
)
def stringify(self, recursive: bool = False) -> plt.AST:
if not self.typs:
return OLambda(
["self"],
plt.Text("()"),
)
elif len(self.typs) == 1:
tuple_content = plt.ConcatString(
plt.Apply(
self.typs[0].stringify(recursive=True),
plt.FunctionalTupleAccess(OVar("self"), 0, len(self.typs)),
),
plt.Text(","),
)
else:
tuple_content = plt.ConcatString(
plt.Apply(
self.typs[0].stringify(recursive=True),
plt.FunctionalTupleAccess(OVar("self"), 0, len(self.typs)),
),
)
for i, t in enumerate(self.typs[1:], start=1):
tuple_content = plt.ConcatString(
tuple_content,
plt.Text(", "),
plt.Apply(
t.stringify(recursive=True),
plt.FunctionalTupleAccess(OVar("self"), i, len(self.typs)),
),
)
return OLambda(
["self"],
plt.ConcatString(plt.Text("("), tuple_content, plt.Text(")")),
)
def _binop_return_type(self, binop: operator, other: "Type") -> "Type":
if isinstance(binop, Add):
if isinstance(other, TupleType):
return TupleType(self.typs + other.typs)
return super()._binop_return_type(binop, other)
@dataclass(frozen=True, unsafe_hash=True)
class PairType(ClassType):
"""An internal type representing built-in PlutusData pairs"""
l_typ: Type
r_typ: Type
def __ge__(self, other):
return isinstance(other, PairType) and all(
t >= ot
for t, ot in zip((self.l_typ, self.r_typ), (other.l_typ, other.r_typ))
)
def stringify(self, recursive: bool = False) -> plt.AST:
tuple_content = plt.ConcatString(
plt.Apply(
self.l_typ.stringify(recursive=True),
transform_ext_params_map(self.l_typ)(plt.FstPair(OVar("self"))),
),
plt.Text(", "),
plt.Apply(
self.r_typ.stringify(recursive=True),
transform_ext_params_map(self.r_typ)(plt.SndPair(OVar("self"))),
),
)
return OLambda(
["self"],
plt.ConcatString(plt.Text("("), tuple_content, plt.Text(")")),
)
@dataclass(frozen=True, unsafe_hash=True)
class ListType(ClassType):
typ: Type
def __ge__(self, other):
return isinstance(other, ListType) and self.typ >= other.typ
def id_map(self, skip_constructor: bool = False) -> str:
return "list<" + self.typ.id_map() + ">"
def attribute_type(self, attr) -> "Type":
if attr == "index":
return InstanceType(
FunctionType(frozenlist([self.typ]), IntegerInstanceType)
)
super().attribute_type(attr)
def attribute(self, attr) -> plt.AST:
if attr == "index":
return OLambda(
["self", "x"],
OLet(
[("x", plt.Force(OVar("x")))],
plt.Apply(
plt.RecFun(
OLambda(
["index", "xs", "a"],
plt.IteNullList(
OVar("xs"),
plt.TraceError("Did not find element in list"),
plt.Ite(
plt.EqualsInteger(
OVar("x"), plt.HeadList(OVar("xs"))
),
OVar("a"),
plt.Apply(
OVar("index"),
OVar("index"),
plt.TailList(OVar("xs")),
plt.AddInteger(OVar("a"), plt.Integer(1)),
),
),
),
),
),
OVar("self"),
plt.Integer(0),
),
),
)
super().attribute(attr)
def stringify(self, recursive: bool = False) -> plt.AST:
return OLambda(
["self"],
OLet(
[
(
"g",
plt.RecFun(
OLambda(
["f", "l"],
plt.AppendString(
plt.Apply(
self.typ.stringify(recursive=True),
plt.HeadList(OVar("l")),
),
OLet(
[("t", plt.TailList(OVar("l")))],
plt.IteNullList(
OVar("t"),
plt.Text("]"),
plt.AppendString(
plt.Text(", "),
plt.Apply(
OVar("f"),
OVar("f"),
OVar("t"),
),
),
),
),
),
)
),
)
],
plt.AppendString(
plt.Text("["),
plt.IteNullList(
OVar("self"),
plt.Text("]"),
plt.Apply(
OVar("g"),
OVar("self"),
),
),
),
),
)
def copy_only_attributes(self) -> plt.AST:
mapped_attrs = plt.MapList(
OVar("self"),
OLambda(
["v"],
transform_ext_params_map(self.typ)(
plt.Apply(
self.typ.copy_only_attributes(),
transform_output_map(self.typ)(OVar("v")),
)
),
),
empty_list(self.typ),
)
return OLambda(["self"], mapped_attrs)
def _binop_return_type(self, binop: operator, other: "Type") -> "Type":
if isinstance(binop, Add):
if isinstance(other, InstanceType) and isinstance(other.typ, ListType):
other_typ = other.typ
assert (
self.typ >= other_typ.typ or other_typ.typ >= self.typ
), f"Types of lists {self.typ} and {other_typ.typ} are not compatible"
return ListType(
self.typ if self.typ >= other_typ.typ else other_typ.typ
)
return super()._binop_return_type(binop, other)
def _binop_bin_fun(self, binop: operator, other: AST):
if isinstance(binop, Add):
if isinstance(other.typ, InstanceType) and isinstance(
other.typ.typ, ListType
):
return plt.AppendList
def _unop_return_type(self, unop: unaryop) -> "Type":
if isinstance(unop, Not):
return BoolType()
return super()._unop_return_type(unop)
def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]:
if isinstance(unop, Not):
return lambda x: plt.IteNullList(x, plt.Bool(True), plt.Bool(False))
return super()._unop_fun(unop)
@dataclass(frozen=True, unsafe_hash=True)
class DictType(ClassType):
key_typ: Type
value_typ: Type
def id_map(self, skip_constructor: bool = False) -> str:
return "map<" + self.key_typ.id_map() + "," + self.value_typ.id_map() + ">"
def attribute_type(self, attr) -> "Type":
if attr == "get":
return InstanceType(
FunctionType(frozenlist([self.key_typ, self.value_typ]), self.value_typ)
)
if attr == "keys":
return InstanceType(
FunctionType(frozenlist([]), InstanceType(ListType(self.key_typ)))
)
if attr == "values":
return InstanceType(
FunctionType(frozenlist([]), InstanceType(ListType(self.value_typ)))
)
if attr == "items":
return InstanceType(
FunctionType(
frozenlist([]),
InstanceType(
ListType(InstanceType(PairType(self.key_typ, self.value_typ)))
),
)
)
raise TypeInferenceError(
f"Type of attribute '{attr}' is unknown for type Dict."
)
def attribute(self, attr) -> plt.AST:
if attr == "get":
return OLambda(
["self", "key", "default"],
transform_ext_params_map(self.value_typ)(
OLet(
[
(
"key_mapped",
transform_output_map(self.key_typ)(
plt.Force(OVar("key"))
),
)
],
plt.SndPair(
plt.FindList(
OVar("self"),
OLambda(
["x"],
plt.EqualsData(
OVar("key_mapped"),
plt.FstPair(OVar("x")),
),
),
# this is a bit ugly... we wrap - only to later unwrap again
plt.MkPairData(
OVar("key_mapped"),
transform_output_map(self.value_typ)(
plt.Force(OVar("default"))
),
),
),
),
),
),
)
if attr == "keys":
return OLambda(
["self", "_"],
plt.MapList(
OVar("self"),
OLambda(
["x"],
transform_ext_params_map(self.key_typ)(plt.FstPair(OVar("x"))),
),
empty_list(self.key_typ),
),
)
if attr == "values":
return OLambda(
["self", "_"],
plt.MapList(
OVar("self"),
OLambda(
["x"],
transform_ext_params_map(self.value_typ)(
plt.SndPair(OVar("x"))
),
),
empty_list(self.value_typ),
),
)
if attr == "items":
return OLambda(
["self", "_"],
OVar("self"),
)
raise NotImplementedError(f"Attribute '{attr}' of Dict is unknown.")
def __ge__(self, other):
return (
isinstance(other, DictType)
and self.key_typ >= other.key_typ
and self.value_typ >= other.value_typ
)
def stringify(self, recursive: bool = False) -> plt.AST:
return OLambda(
["self"],
OLet(
[
(
"g",
plt.RecFun(
OLambda(
["f", "l"],
OLet(
[
("h", plt.HeadList(OVar("l"))),
("t", plt.TailList(OVar("l"))),
],
plt.ConcatString(
plt.Apply(
self.key_typ.stringify(recursive=True),
transform_ext_params_map(self.key_typ)(
plt.FstPair(OVar("h"))
),
),
plt.Text(": "),
plt.Apply(
self.value_typ.stringify(recursive=True),
transform_ext_params_map(self.value_typ)(
plt.SndPair(OVar("h"))
),
),
plt.IteNullList(
OVar("t"),
plt.Text("}"),
plt.AppendString(
plt.Text(", "),
plt.Apply(
OVar("f"),
OVar("f"),
OVar("t"),
),
),
),
),
),
)
),
)
],
plt.AppendString(
plt.Text("{"),
plt.IteNullList(
OVar("self"),
plt.Text("}"),
plt.Apply(
OVar("g"),
OVar("self"),
),
),
),
),
)
def copy_only_attributes(self) -> plt.AST:
def CustomMapFilterList(
l: plt.AST,
filter_op: plt.AST,
map_op: plt.AST,
empty_list=plt.EmptyDataList(),
):
from pluthon import (
Apply,
Lambda as PLambda,
RecFun,
IteNullList,
Var as PVar,
HeadList,
Ite,
TailList,
PrependList,
Let as PLet,
)
"""
Apply a filter and a map function on each element in a list (throws out all that evaluate to false)
Performs only a single pass and is hence much more efficient than filter + map
"""
return Apply(
PLambda(
["filter", "map"],
RecFun(
PLambda(
["filtermap", "xs"],
IteNullList(
PVar("xs"),
empty_list,
PLet(
[
("head", HeadList(PVar("xs"))),
("tail", TailList(PVar("xs"))),
],
Ite(
Apply(
PVar("filter"), PVar("head"), PVar("tail")
),
PrependList(
Apply(PVar("map"), PVar("head")),
Apply(
PVar("filtermap"),
PVar("filtermap"),
PVar("tail"),
),
),
Apply(
PVar("filtermap"),
PVar("filtermap"),
PVar("tail"),
),
),
),
),
),
),
),
filter_op,
map_op,
l,
)
mapped_attrs = CustomMapFilterList(
OVar("self"),
OLambda(
["h", "t"],
OLet(
[
("hfst", plt.FstPair(OVar("h"))),
],
plt.Not(
plt.AnyList(
OVar("t"),
OLambda(
["e"],
plt.EqualsData(OVar("hfst"), plt.FstPair(OVar("e"))),
),
)
),
),
),
OLambda(
["v"],
plt.MkPairData(
transform_output_map(self.key_typ)(
plt.Apply(
self.key_typ.copy_only_attributes(),
transform_ext_params_map(self.key_typ)(
plt.FstPair(OVar("v"))
),
)
),
transform_output_map(self.value_typ)(
plt.Apply(
self.value_typ.copy_only_attributes(),
transform_ext_params_map(self.value_typ)(
plt.SndPair(OVar("v"))
),
)
),
),
),
plt.EmptyDataPairList(),
)
return OLambda(["self"], mapped_attrs)
def _unop_return_type(self, unop: unaryop) -> "Type":
if isinstance(unop, Not):
return BoolType()
return super()._unop_return_type(unop)
def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]:
if isinstance(unop, Not):
return lambda x: plt.IteNullList(x, plt.Bool(True), plt.Bool(False))
return super()._unop_fun(unop)
@dataclass(frozen=True, unsafe_hash=True)
class FunctionType(ClassType):
argtyps: typing.List[Type]
rettyp: Type
# A map from external variable names to their types when the function is defined
bound_vars: typing.Dict[str, Type] = dataclasses.field(default_factory=frozendict)
# Whether and under which name the function binds itself
# The type of this variable is "self"
bind_self: typing.Optional[str] = None
def __post_init__(self):
object.__setattr__(self, "argtyps", frozenlist(self.argtyps))
object.__setattr__(self, "bound_vars", frozendict(self.bound_vars))
def __ge__(self, other):
return (
isinstance(other, FunctionType)
and len(self.argtyps) == len(other.argtyps)
and all(a >= oa for a, oa in zip(self.argtyps, other.argtyps))
and self.bound_vars.keys() == other.bound_vars.keys()
and all(sbv >= other.bound_vars[k] for k, sbv in self.bound_vars.items())
and self.bind_self == other.bind_self
and other.rettyp >= self.rettyp
)
def stringify(self, recursive: bool = False) -> plt.AST:
return OLambda(["x"], plt.Text("<function>"))
@dataclass(frozen=True, unsafe_hash=True)
class InstanceType(Type):
typ: ClassType
def id_map(self, skip_constructor: bool = False) -> str:
return self.typ.id_map(skip_constructor=skip_constructor)
def constr_type(self) -> FunctionType:
raise TypeInferenceError(f"Can not construct an instance {self}")
def constr(self) -> plt.AST:
raise NotImplementedError(f"Can not construct an instance {self}")
def attribute_type(self, attr) -> Type:
return self.typ.attribute_type(attr)
def attribute(self, attr) -> plt.AST:
return self.typ.attribute(attr)
def cmp(self, op: cmpop, o: "Type") -> plt.AST:
"""The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison."""
if isinstance(o, InstanceType):
return self.typ.cmp(op, o.typ)
return super().cmp(op, o)
def __ge__(self, other):
return isinstance(other, InstanceType) and self.typ >= other.typ
def stringify(self, recursive: bool = False) -> plt.AST:
return self.typ.stringify(recursive=recursive)
def copy_only_attributes(self) -> plt.AST:
return self.typ.copy_only_attributes()
def binop_type(self, binop: operator, other: "Type") -> "Type":
return self.typ.binop_type(binop, other)
def binop(self, binop: operator, other: AST) -> plt.AST:
return self.typ.binop(binop, other)
def unop_type(self, unop: unaryop) -> "Type":
return self.typ.unop_type(unop)
def unop(self, unop: unaryop) -> plt.AST:
return self.typ.unop(unop)
@dataclass(frozen=True, unsafe_hash=True)
class IntegerType(AtomicType):
def id_map(self, skip_constructor: bool = False) -> str:
return "int"
def constr_type(self) -> InstanceType:
return InstanceType(PolymorphicFunctionType(IntImpl()))
def cmp(self, op: cmpop, o: "Type") -> plt.AST:
"""The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison."""
if isinstance(o, BoolType):
if isinstance(op, Eq):
# 1 == True
# 0 == False
# all other comparisons are False
return OLambda(
["x", "y"],
plt.Ite(
OVar("y"),
plt.EqualsInteger(OVar("x"), plt.Integer(1)),
plt.EqualsInteger(OVar("x"), plt.Integer(0)),
),
)
if isinstance(o, IntegerType):
if isinstance(op, Eq):
return plt.BuiltIn(uplc.BuiltInFun.EqualsInteger)
if isinstance(op, NotEq):
return OLambda(
["x", "y"],
plt.Not(
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsInteger),
OVar("y"),
OVar("x"),
)
),
)
if isinstance(op, LtE):
return plt.BuiltIn(uplc.BuiltInFun.LessThanEqualsInteger)
if isinstance(op, Lt):
return plt.BuiltIn(uplc.BuiltInFun.LessThanInteger)
if isinstance(op, Gt):
return OLambda(
["x", "y"],
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.LessThanInteger),
OVar("y"),
OVar("x"),
),
)
if isinstance(op, GtE):
return OLambda(
["x", "y"],
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.LessThanEqualsInteger),
OVar("y"),
OVar("x"),
),
)
if (
isinstance(o, ListType)
and isinstance(o.typ, InstanceType)
and isinstance(o.typ.typ, IntegerType)
):
if isinstance(op, In):
return OLambda(
["x", "y"],
plt.AnyList(
OVar("y"),
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsInteger), OVar("x")
),
),
)
if isinstance(op, NotIn):
return OLambda(
["x", "y"],
plt.Not(
plt.AnyList(
OVar("y"),
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsInteger), OVar("x")
),
),
),
)
return super().cmp(op, o)
def stringify(self, recursive: bool = False) -> plt.AST:
return OLambda(
["x"],
plt.DecodeUtf8(
OLet(
[
(
"strlist",
plt.RecFun(
OLambda(
["f", "i"],
plt.Ite(
plt.LessThanEqualsInteger(
OVar("i"), plt.Integer(0)
),
plt.EmptyIntegerList(),
plt.MkCons(
plt.AddInteger(
plt.ModInteger(
OVar("i"), plt.Integer(10)
),
plt.Integer(ord("0")),
),
plt.Apply(
OVar("f"),
OVar("f"),
plt.DivideInteger(
OVar("i"), plt.Integer(10)
),
),
),
),
),
),
),
(
"mkstr",
OLambda(
["i"],
plt.FoldList(
plt.Apply(OVar("strlist"), OVar("i")),
OLambda(
["b", "i"],
plt.ConsByteString(OVar("i"), OVar("b")),
),
plt.ByteString(b""),
),
),
),
],
plt.Ite(
plt.EqualsInteger(OVar("x"), plt.Integer(0)),
plt.ByteString(b"0"),
plt.Ite(
plt.LessThanInteger(OVar("x"), plt.Integer(0)),
plt.ConsByteString(
plt.Integer(ord("-")),
plt.Apply(OVar("mkstr"), plt.Negate(OVar("x"))),
),
plt.Apply(OVar("mkstr"), OVar("x")),
),
),
)
),
)
def _binop_return_type(self, binop: operator, other: "Type") -> "Type":
if (
isinstance(binop, Add)
or isinstance(binop, Sub)
or isinstance(binop, FloorDiv)
or isinstance(binop, Mod)
or isinstance(binop, Div)
or isinstance(binop, Pow)
):
if other == IntegerInstanceType:
return IntegerType()
elif other == BoolInstanceType:
# cast to integer
return IntegerType()
if isinstance(binop, Mult):
if other == IntegerInstanceType:
return IntegerType()
elif other == ByteStringInstanceType:
return ByteStringType()
elif other == StringInstanceType:
return StringType()
return super().binop_type(binop, other)
def _binop_bin_fun(self, binop: operator, other: AST):
if other.typ == IntegerInstanceType:
if isinstance(binop, Add):
return plt.AddInteger
elif isinstance(binop, Sub):
return plt.SubtractInteger
elif isinstance(binop, FloorDiv):
return plt.DivideInteger
elif isinstance(binop, Mod):
return plt.ModInteger
elif isinstance(binop, Pow):
return lambda x, y: OLet(
[("y", y)],
plt.Ite(
plt.LessThanInteger(OVar("y"), plt.Integer(0)),
plt.TraceError("Negative exponentiation is not supported"),
PowImpl(x, OVar("y")),
),
)
if other.typ == BoolInstanceType:
if isinstance(binop, Add):
return lambda x, y: OLet(
[("x", x), ("y", y)],
plt.Ite(
OVar("y"), plt.AddInteger(OVar("x"), plt.Integer(1)), OVar("x")
),
)
elif isinstance(binop, Sub):
return lambda x, y: OLet(
[("x", x), ("y", y)],
plt.Ite(
OVar("y"),
plt.SubtractInteger(OVar("x"), plt.Integer(1)),
OVar("x"),
),
)
if isinstance(binop, Mult):
if other.typ == IntegerInstanceType:
return plt.MultiplyInteger
elif other.typ == ByteStringInstanceType:
return lambda x, y: ByteStrIntMulImpl(y, x)
elif other.typ == StringInstanceType:
return lambda x, y: StrIntMulImpl(y, x)
def _unop_return_type(self, unop: unaryop) -> "Type":
if isinstance(unop, USub):
return IntegerType()
elif isinstance(unop, UAdd):
return IntegerType()
elif isinstance(unop, Not):
return BoolType()
return super()._unop_return_type(unop)
def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]:
if isinstance(unop, USub):
return lambda x: plt.SubtractInteger(plt.Integer(0), x)
if isinstance(unop, UAdd):
return lambda x: x
if isinstance(unop, Not):
return lambda x: plt.EqualsInteger(x, plt.Integer(0))
return super()._unop_fun(unop)
@dataclass(frozen=True, unsafe_hash=True)
class StringType(AtomicType):
def constr_type(self) -> InstanceType:
return InstanceType(PolymorphicFunctionType(StrImpl()))
def attribute_type(self, attr) -> Type:
if attr == "encode":
return InstanceType(FunctionType(frozenlist([]), ByteStringInstanceType))
return super().attribute_type(attr)
def attribute(self, attr) -> plt.AST:
if attr == "encode":
# No codec -> only the default (utf8) is allowed
return OLambda(["x", "_"], plt.EncodeUtf8(OVar("x")))
return super().attribute(attr)
def cmp(self, op: cmpop, o: "Type") -> plt.AST:
if isinstance(o, StringType):
if isinstance(op, Eq):
return plt.BuiltIn(uplc.BuiltInFun.EqualsString)
if isinstance(op, NotEq):
return OLambda(
["x", "y"], plt.Not(plt.EqualsString(OVar("x"), OVar("y")))
)
return super().cmp(op, o)
def stringify(self, recursive: bool = False) -> plt.AST:
if recursive:
# TODO this is not correct, as the string is not properly escaped
return OLambda(
["self"],
plt.ConcatString(plt.Text("'"), OVar("self"), plt.Text("'")),
)
else:
return OLambda(["self"], OVar("self"))
def _binop_return_type(self, binop: operator, other: "Type") -> "Type":
if isinstance(binop, Add):
if other == StringInstanceType:
return StringType()
if isinstance(binop, Mult):
if other == IntegerInstanceType:
return StringType()
return super().binop_type(binop, other)
def _binop_bin_fun(self, binop: operator, other: AST):
if isinstance(binop, Add):
if other.typ == StringInstanceType:
return plt.AppendString
if isinstance(binop, Mult):
if other.typ == IntegerInstanceType:
return StrIntMulImpl
def _unop_return_type(self, unop: unaryop) -> "Type":
if isinstance(unop, Not):
return BoolType()
return super()._unop_return_type(unop)
def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]:
if isinstance(unop, Not):
return lambda x: plt.EqualsInteger(
plt.LengthOfByteString(plt.EncodeUtf8(x)), plt.Integer(0)
)
return super()._unop_fun(unop)
@dataclass(frozen=True, unsafe_hash=True)
class ByteStringType(AtomicType):
def id_map(self, skip_constructor: bool = False) -> str:
return "bytes"
def constr_type(self) -> InstanceType:
return InstanceType(PolymorphicFunctionType(BytesImpl()))
def attribute_type(self, attr) -> Type:
if attr == "decode":
return InstanceType(FunctionType(frozenlist([]), StringInstanceType))
if attr == "hex":
return InstanceType(FunctionType(frozenlist([]), StringInstanceType))
if attr == "fromhex":
return InstanceType(
FunctionType(
frozenlist([StringInstanceType]),
ByteStringInstanceType,
)
)
return super().attribute_type(attr)
def attribute(self, attr) -> plt.AST:
if attr == "decode":
# No codec -> only the default (utf8) is allowed
return OLambda(["x", "_"], plt.DecodeUtf8(OVar("x")))
if attr == "hex":
return OLambda(
["x", "_"],
plt.DecodeUtf8(
OLet(
[
(
"hexlist",
plt.RecFun(
OLambda(
["f", "i"],
plt.Ite(
plt.LessThanInteger(
OVar("i"), plt.Integer(0)
),
plt.EmptyIntegerList(),
plt.MkCons(
plt.IndexByteString(
OVar("x"), OVar("i")
),
plt.Apply(
OVar("f"),
OVar("f"),
plt.SubtractInteger(
OVar("i"), plt.Integer(1)
),
),
),
),
),
),
),
(
"map_str",
OLambda(
["i"],
plt.AddInteger(
OVar("i"),
plt.IfThenElse(
plt.LessThanInteger(
OVar("i"), plt.Integer(10)
),
plt.Integer(ord("0")),
plt.Integer(ord("a") - 10),
),
),
),
),
(
"mkstr",
OLambda(
["i"],
plt.FoldList(
plt.Apply(OVar("hexlist"), OVar("i")),
OLambda(
["b", "i"],
plt.ConsByteString(
plt.Apply(
OVar("map_str"),
plt.DivideInteger(
OVar("i"), plt.Integer(16)
),
),
plt.ConsByteString(
plt.Apply(
OVar("map_str"),
plt.ModInteger(
OVar("i"),
plt.Integer(16),
),
),
OVar("b"),
),
),
),
plt.ByteString(b""),
),
),
),
],
plt.Apply(
OVar("mkstr"),
plt.SubtractInteger(
plt.LengthOfByteString(OVar("x")), plt.Integer(1)
),
),
),
),
)
if attr == "fromhex":
return OLambda(
["_", "x"],
OLet(
[
(
"bytestr",
plt.EncodeUtf8(plt.Force(OVar("x"))),
),
(
"bytestr_len",
plt.LengthOfByteString(OVar("bytestr")),
),
(
"char_to_int",
OLambda(
["c"],
plt.Ite(
plt.And(
plt.LessThanEqualsInteger(
plt.Integer(ord("a")), OVar("c")
),
plt.LessThanEqualsInteger(
OVar("c"), plt.Integer(ord("f"))
),
),
plt.AddInteger(
plt.SubtractInteger(
OVar("c"), plt.Integer(ord("a"))
),
plt.Integer(10),
),
plt.Ite(
plt.And(
plt.LessThanEqualsInteger(
plt.Integer(ord("0")), OVar("c")
),
plt.LessThanEqualsInteger(
OVar("c"), plt.Integer(ord("9"))
),
),
plt.SubtractInteger(
OVar("c"), plt.Integer(ord("0"))
),
plt.Ite(
plt.And(
plt.LessThanEqualsInteger(
plt.Integer(ord("A")), OVar("c")
),
plt.LessThanEqualsInteger(
OVar("c"), plt.Integer(ord("F"))
),
),
plt.AddInteger(
plt.SubtractInteger(
OVar("c"), plt.Integer(ord("A"))
),
plt.Integer(10),
),
plt.TraceError("Invalid hex character"),
),
),
),
),
),
(
"splitlist",
plt.RecFun(
OLambda(
["f", "i"],
plt.Ite(
plt.LessThanInteger(
OVar("bytestr_len"),
plt.AddInteger(OVar("i"), plt.Integer(1)),
),
plt.ByteString(b""),
plt.Ite(
plt.LessThanInteger(
OVar("bytestr_len"),
plt.AddInteger(
OVar("i"), plt.Integer(2)
),
),
plt.TraceError("Invalid hex string"),
OLet(
[
(
"char_at_i",
plt.IndexByteString(
OVar("bytestr"),
OVar("i"),
),
),
(
"char_at_ip1",
plt.IndexByteString(
OVar("bytestr"),
plt.AddInteger(
OVar("i"),
plt.Integer(1),
),
),
),
],
plt.ConsByteString(
plt.AddInteger(
plt.MultiplyInteger(
plt.Apply(
OVar("char_to_int"),
OVar("char_at_i"),
),
plt.Integer(16),
),
plt.Apply(
OVar("char_to_int"),
OVar("char_at_ip1"),
),
),
plt.Apply(
OVar("f"),
OVar("f"),
plt.AddInteger(
OVar("i"),
plt.Integer(2),
),
),
),
),
),
),
)
),
),
],
plt.Apply(OVar("splitlist"), plt.Integer(0)),
),
)
return super().attribute(attr)
def cmp(self, op: cmpop, o: "Type") -> plt.AST:
if isinstance(o, ByteStringType):
if isinstance(op, Eq):
return plt.BuiltIn(uplc.BuiltInFun.EqualsByteString)
if isinstance(op, NotEq):
return OLambda(
["x", "y"],
plt.Not(
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsByteString),
OVar("y"),
OVar("x"),
)
),
)
if isinstance(op, Lt):
return plt.BuiltIn(uplc.BuiltInFun.LessThanByteString)
if isinstance(op, LtE):
return plt.BuiltIn(uplc.BuiltInFun.LessThanEqualsByteString)
if isinstance(op, Gt):
return OLambda(
["x", "y"],
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.LessThanByteString),
OVar("y"),
OVar("x"),
),
)
if isinstance(op, GtE):
return OLambda(
["x", "y"],
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.LessThanEqualsByteString),
OVar("y"),
OVar("x"),
),
)
if (
isinstance(o, ListType)
and isinstance(o.typ, InstanceType)
and isinstance(o.typ.typ, ByteStringType)
):
if isinstance(op, In):
return OLambda(
["x", "y"],
plt.AnyList(
OVar("y"),
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsByteString),
OVar("x"),
),
),
)
if isinstance(op, NotIn):
return OLambda(
["x", "y"],
plt.Not(
plt.AnyList(
OVar("y"),
plt.Apply(
plt.BuiltIn(uplc.BuiltInFun.EqualsByteString),
OVar("x"),
),
),
),
)
return super().cmp(op, o)
def stringify(self, recursive: bool = False) -> plt.AST:
return OLambda(
["x"],
plt.DecodeUtf8(
OLet(
[
(
"hexlist",
plt.RecFun(
OLambda(
["f", "i"],
plt.Ite(
plt.LessThanInteger(OVar("i"), plt.Integer(0)),
plt.EmptyIntegerList(),
plt.MkCons(
plt.IndexByteString(OVar("x"), OVar("i")),
plt.Apply(
OVar("f"),
OVar("f"),
plt.SubtractInteger(
OVar("i"), plt.Integer(1)
),
),
),
),
),
),
),
(
"map_str",
OLambda(
["i"],
plt.AddInteger(
OVar("i"),
plt.IfThenElse(
plt.LessThanInteger(OVar("i"), plt.Integer(10)),
plt.Integer(ord("0")),
plt.Integer(ord("a") - 10),
),
),
),
),
(
"mkstr",
OLambda(
["i"],
plt.FoldList(
plt.Apply(OVar("hexlist"), OVar("i")),
OLambda(
["b", "i"],
plt.Ite(
# ascii printable characters are kept unmodified
plt.And(
plt.LessThanEqualsInteger(
plt.Integer(0x20), OVar("i")
),
plt.LessThanEqualsInteger(
OVar("i"), plt.Integer(0x7E)
),
),
plt.Ite(
plt.EqualsInteger(
OVar("i"),
plt.Integer(ord("\\")),
),
plt.AppendByteString(
plt.ByteString(b"\\\\"),
OVar("b"),
),
plt.Ite(
plt.EqualsInteger(
OVar("i"),
plt.Integer(ord("'")),
),
plt.AppendByteString(
plt.ByteString(b"\\'"),
OVar("b"),
),
plt.ConsByteString(
OVar("i"), OVar("b")
),
),
),
plt.Ite(
plt.EqualsInteger(
OVar("i"), plt.Integer(ord("\t"))
),
plt.AppendByteString(
plt.ByteString(b"\\t"), OVar("b")
),
plt.Ite(
plt.EqualsInteger(
OVar("i"),
plt.Integer(ord("\n")),
),
plt.AppendByteString(
plt.ByteString(b"\\n"),
OVar("b"),
),
plt.Ite(
plt.EqualsInteger(
OVar("i"),
plt.Integer(ord("\r")),
),
plt.AppendByteString(
plt.ByteString(b"\\r"),
OVar("b"),
),
plt.AppendByteString(
plt.ByteString(b"\\x"),
plt.ConsByteString(
plt.Apply(
OVar("map_str"),
plt.DivideInteger(
OVar("i"),
plt.Integer(16),
),
),
plt.ConsByteString(
plt.Apply(
OVar("map_str"),
plt.ModInteger(
OVar("i"),
plt.Integer(
16
),
),
),
OVar("b"),
),
),
),
),
),
),
),
),
plt.ByteString(b""),
),
),
),
],
plt.ConcatByteString(
plt.ByteString(b"b'"),
plt.Apply(
OVar("mkstr"),
plt.SubtractInteger(
plt.LengthOfByteString(OVar("x")), plt.Integer(1)
),
),
plt.ByteString(b"'"),
),
),
),
)
def _binop_return_type(self, binop: operator, other: "Type") -> "Type":
if isinstance(binop, Add):
if other == ByteStringInstanceType:
return ByteStringType()
if isinstance(binop, Mult):
if other == IntegerInstanceType:
return ByteStringType()
return super().binop_type(binop, other)
def _binop_bin_fun(self, binop: operator, other: AST):
if isinstance(binop, Add):
if other.typ == ByteStringInstanceType:
return plt.AppendByteString
if isinstance(binop, Mult):
if other.typ == IntegerInstanceType:
return ByteStrIntMulImpl
def _unop_return_type(self, unop: unaryop) -> "Type":
if isinstance(unop, Not):
return BoolType()
return super()._unop_return_type(unop)
def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]:
if isinstance(unop, Not):
return lambda x: plt.EqualsInteger(
plt.LengthOfByteString(x), plt.Integer(0)
)
return super()._unop_fun(unop)
@dataclass(frozen=True, unsafe_hash=True)
class BoolType(AtomicType):
def constr_type(self) -> "InstanceType":
return InstanceType(PolymorphicFunctionType(BoolImpl()))
def cmp(self, op: cmpop, o: "Type") -> plt.AST:
if isinstance(o, IntegerType):
if isinstance(op, Eq):
# 1 == True
# 0 == False
# all other comparisons are False
return OLambda(
["y", "x"],
plt.Ite(
OVar("y"),
plt.EqualsInteger(OVar("x"), plt.Integer(1)),
plt.EqualsInteger(OVar("x"), plt.Integer(0)),
),
)
if isinstance(op, NotEq):
return OLambda(
["y", "x"],
plt.Ite(
OVar("y"),
plt.NotEqualsInteger(OVar("x"), plt.Integer(1)),
plt.NotEqualsInteger(OVar("x"), plt.Integer(0)),
),
)
if isinstance(o, BoolType):
if isinstance(op, Eq):
return OLambda(["x", "y"], plt.Iff(OVar("x"), OVar("y")))
if isinstance(op, NotEq):
return OLambda(["x", "y"], plt.Not(plt.Iff(OVar("x"), OVar("y"))))
if isinstance(op, Lt):
return OLambda(["x", "y"], plt.And(plt.Not(OVar("x")), OVar("y")))
if isinstance(op, Gt):
return OLambda(["x", "y"], plt.And(OVar("x"), plt.Not(OVar("y"))))
return super().cmp(op, o)
def stringify(self, recursive: bool = False) -> plt.AST:
return OLambda(
["self"],
plt.Ite(
OVar("self"),
plt.Text("True"),
plt.Text("False"),
),
)
def _unop_return_type(self, unop: unaryop) -> "Type":
if isinstance(unop, Not):
return BoolType()
return super()._unop_return_type(unop)
def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]:
if isinstance(unop, Not):
return plt.Not
return super()._unop_fun(unop)
@dataclass(frozen=True, unsafe_hash=True)
class UnitType(AtomicType):
def cmp(self, op: cmpop, o: "Type") -> plt.AST:
if isinstance(o, UnitType):
if isinstance(op, Eq):
return OLambda(["x", "y"], plt.Bool(True))
if isinstance(op, NotEq):
return OLambda(["x", "y"], plt.Bool(False))
return super().cmp(op, o)
def stringify(self, recursive: bool = False) -> plt.AST:
return OLambda(["self"], plt.Text("None"))
def _unop_return_type(self, unop: unaryop) -> "Type":
if isinstance(unop, Not):
return BoolType()
return super()._unop_return_type(unop)
def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]:
if isinstance(unop, Not):
return lambda x: plt.Bool(True)
return super()._unop_fun(unop)
IntegerInstanceType = InstanceType(IntegerType())
StringInstanceType = InstanceType(StringType())
ByteStringInstanceType = InstanceType(ByteStringType())
BoolInstanceType = InstanceType(BoolType())
UnitInstanceType = InstanceType(UnitType())
ATOMIC_TYPES = {
int.__name__: IntegerType(),
str.__name__: StringType(),
bytes.__name__: ByteStringType(),
bytearray.__name__: ByteStringType(),
type(None).__name__: UnitType(),
bool.__name__: BoolType(),
}
NoneInstanceType = UnitInstanceType
class InaccessibleType(ClassType):
"""A type that blocks overwriting of a function"""
pass
def repeated_addition(zero, add):
# this is optimized for logarithmic complexity by exponentiation by squaring
# it follows the implementation described here: https://en.wikipedia.org/wiki/Exponentiation_by_squaring#With_constant_auxiliary_memory
def RepeatedAdd(x: plt.AST, y: plt.AST):
return plt.Apply(
plt.RecFun(
OLambda(
["f", "y", "x", "n"],
plt.Ite(
plt.LessThanEqualsInteger(OVar("n"), plt.Integer(0)),
OVar("y"),
OLet(
[
(
"n_half",
plt.DivideInteger(OVar("n"), plt.Integer(2)),
)
],
plt.Ite(
# tests whether (x//2)*2 == x which is True iff x is even
plt.EqualsInteger(
plt.AddInteger(OVar("n_half"), OVar("n_half")),
OVar("n"),
),
plt.Apply(
OVar("f"),
OVar("f"),
OVar("y"),
add(OVar("x"), OVar("x")),
OVar("n_half"),
),
plt.Apply(
OVar("f"),
OVar("f"),
add(OVar("y"), OVar("x")),
add(OVar("x"), OVar("x")),
OVar("n_half"),
),
),
),
),
),
),
zero,
x,
y,
)
return RepeatedAdd
PowImpl = repeated_addition(plt.Integer(1), plt.MultiplyInteger)
ByteStrIntMulImpl = repeated_addition(plt.ByteString(b""), plt.AppendByteString)
StrIntMulImpl = repeated_addition(plt.Text(""), plt.AppendString)
class PolymorphicFunction:
def __new__(meta, *args, **kwargs):
klass = super().__new__(meta)
for key in ["impl_from_args"]:
value = getattr(klass, key)
wrapped = patternize(value)
object.__setattr__(klass, key, wrapped)
return klass
def type_from_args(self, args: typing.List[Type]) -> FunctionType:
raise NotImplementedError()
def impl_from_args(self, args: typing.List[Type]) -> plt.AST:
raise NotImplementedError()
class StrImpl(PolymorphicFunction):
def type_from_args(self, args: typing.List[Type]) -> FunctionType:
assert (
len(args) == 1
), f"'str' takes only one argument, but {len(args)} were given"
typ = args[0]
assert isinstance(typ, InstanceType), "Can only stringify instances"
return FunctionType(args, StringInstanceType)
def impl_from_args(self, args: typing.List[Type]) -> plt.AST:
arg = args[0]
assert isinstance(arg, InstanceType), "Can only stringify instances"
return arg.typ.stringify()
class IntImpl(PolymorphicFunction):
def type_from_args(self, args: typing.List[Type]) -> FunctionType:
assert (
len(args) == 1
), f"'int' takes only one argument, but {len(args)} were given"
typ = args[0]
assert isinstance(typ, InstanceType), "Can only create ints from instances"
assert any(
isinstance(typ.typ, t) for t in (IntegerType, StringType, BoolType)
), "Can only create integers from int, str or bool"
return FunctionType(args, IntegerInstanceType)
def impl_from_args(self, args: typing.List[Type]) -> plt.AST:
arg = args[0]
assert isinstance(arg, InstanceType), "Can only create ints from instances"
if isinstance(arg.typ, IntegerType):
return OLambda(["x"], OVar("x"))
elif isinstance(arg.typ, BoolType):
return OLambda(
["x"], plt.IfThenElse(OVar("x"), plt.Integer(1), plt.Integer(0))
)
elif isinstance(arg.typ, StringType):
return OLambda(
["x"],
OLet(
[
("e", plt.EncodeUtf8(OVar("x"))),
("len", plt.LengthOfByteString(OVar("e"))),
(
"first_int",
plt.Ite(
plt.LessThanInteger(plt.Integer(0), OVar("len")),
plt.IndexByteString(OVar("e"), plt.Integer(0)),
plt.Integer(ord("_")),
),
),
(
"last_int",
plt.IndexByteString(
OVar("e"),
plt.SubtractInteger(OVar("len"), plt.Integer(1)),
),
),
(
"fold_start",
OLambda(
["start"],
plt.FoldList(
plt.Range(OVar("len"), OVar("start")),
OLambda(
["s", "i"],
OLet(
[
(
"b",
plt.IndexByteString(
OVar("e"), OVar("i")
),
)
],
plt.Ite(
plt.EqualsInteger(
OVar("b"), plt.Integer(ord("_"))
),
OVar("s"),
plt.Ite(
plt.Or(
plt.LessThanInteger(
OVar("b"),
plt.Integer(ord("0")),
),
plt.LessThanInteger(
plt.Integer(ord("9")),
OVar("b"),
),
),
plt.TraceError(
"ValueError: invalid literal for int() with base 10"
),
plt.AddInteger(
plt.SubtractInteger(
OVar("b"),
plt.Integer(ord("0")),
),
plt.MultiplyInteger(
OVar("s"),
plt.Integer(10),
),
),
),
),
),
),
plt.Integer(0),
),
),
),
],
plt.Ite(
plt.Or(
plt.Or(
plt.EqualsInteger(
OVar("first_int"),
plt.Integer(ord("_")),
),
plt.EqualsInteger(
OVar("last_int"),
plt.Integer(ord("_")),
),
),
plt.And(
plt.EqualsInteger(OVar("len"), plt.Integer(1)),
plt.Or(
plt.EqualsInteger(
OVar("first_int"),
plt.Integer(ord("-")),
),
plt.EqualsInteger(
OVar("first_int"),
plt.Integer(ord("+")),
),
),
),
),
plt.TraceError(
"ValueError: invalid literal for int() with base 10"
),
plt.Ite(
plt.EqualsInteger(
OVar("first_int"),
plt.Integer(ord("-")),
),
plt.Negate(
plt.Apply(OVar("fold_start"), plt.Integer(1)),
),
plt.Ite(
plt.EqualsInteger(
OVar("first_int"),
plt.Integer(ord("+")),
),
plt.Apply(OVar("fold_start"), plt.Integer(1)),
plt.Apply(OVar("fold_start"), plt.Integer(0)),
),
),
),
),
)
else:
raise NotImplementedError(
f"Can not derive integer from type {arg.typ.__name__}"
)
class BoolImpl(PolymorphicFunction):
def type_from_args(self, args: typing.List[Type]) -> FunctionType:
assert (
len(args) == 1
), f"'bool' takes only one argument, but {len(args)} were given"
typ = args[0]
assert isinstance(typ, InstanceType), "Can only create bools from instances"
assert any(
isinstance(typ.typ, t)
for t in (
IntegerType,
StringType,
ByteStringType,
BoolType,
UnitType,
ListType,
DictType,
)
), "Can only create bools from int, str, bool, bytes, None, list or dict"
return FunctionType(args, BoolInstanceType)
def impl_from_args(self, args: typing.List[Type]) -> plt.AST:
arg = args[0]
assert isinstance(arg, InstanceType), "Can only create bools from instances"
if isinstance(arg.typ, BoolType):
return OLambda(["x"], OVar("x"))
elif isinstance(arg.typ, IntegerType):
return OLambda(["x"], plt.NotEqualsInteger(OVar("x"), plt.Integer(0)))
elif isinstance(arg.typ, StringType):
return OLambda(
["x"],
plt.NotEqualsInteger(
plt.LengthOfByteString(plt.EncodeUtf8(OVar("x"))), plt.Integer(0)
),
)
elif isinstance(arg.typ, ByteStringType):
return OLambda(
["x"],
plt.NotEqualsInteger(plt.LengthOfByteString(OVar("x")), plt.Integer(0)),
)
elif isinstance(arg.typ, ListType) or isinstance(arg.typ, DictType):
return OLambda(["x"], plt.Not(plt.NullList(OVar("x"))))
elif isinstance(arg.typ, UnitType):
return OLambda(["x"], plt.Bool(False))
else:
raise NotImplementedError(
f"Can not derive bool from type {arg.typ.__name__}"
)
class BytesImpl(PolymorphicFunction):
def type_from_args(self, args: typing.List[Type]) -> FunctionType:
assert (
len(args) == 1
), f"'bytes' takes only one argument, but {len(args)} were given"
typ = args[0]
assert isinstance(typ, InstanceType), "Can only create bools from instances"
assert any(
isinstance(typ.typ, t)
for t in (
IntegerType,
ByteStringType,
ListType,
)
), "Can only create bytes from int, bytes or integer lists"
if isinstance(typ.typ, ListType):
assert (
typ.typ.typ == IntegerInstanceType
), "Can only create bytes from integer lists but got a list with another type"
return FunctionType(args, ByteStringInstanceType)
def impl_from_args(self, args: typing.List[Type]) -> plt.AST:
arg = args[0]
assert isinstance(arg, InstanceType), "Can only create bytes from instances"
if isinstance(arg.typ, ByteStringType):
return OLambda(["x"], OVar("x"))
elif isinstance(arg.typ, IntegerType):
return OLambda(
["x"],
plt.Ite(
plt.LessThanInteger(OVar("x"), plt.Integer(0)),
plt.TraceError("ValueError: negative count"),
ByteStrIntMulImpl(plt.ByteString(b"\x00"), OVar("x")),
),
)
elif isinstance(arg.typ, ListType):
return OLambda(
["xs"],
plt.RFoldList(
OVar("xs"),
OLambda(["a", "x"], plt.ConsByteString(OVar("x"), OVar("a"))),
plt.ByteString(b""),
),
)
else:
raise NotImplementedError(
f"Can not derive bytes from type {arg.typ.__name__}"
)
@dataclass(frozen=True, unsafe_hash=True)
class PolymorphicFunctionType(ClassType):
"""A special type of builtin that may act differently on different parameters"""
polymorphic_function: PolymorphicFunction
def __ge__(self, other):
return (
isinstance(other, PolymorphicFunctionType)
and self.polymorphic_function == other.polymorphic_function
)
@dataclass(frozen=True, unsafe_hash=True)
class PolymorphicFunctionInstanceType(InstanceType):
typ: FunctionType
polymorphic_function: PolymorphicFunction
EmptyListMap = {
IntegerInstanceType: plt.EmptyIntegerList(),
ByteStringInstanceType: plt.EmptyByteStringList(),
StringInstanceType: plt.EmptyTextList(),
UnitInstanceType: plt.EmptyUnitList(),
BoolInstanceType: plt.EmptyBoolList(),
}
def empty_list(p: Type):
if p in EmptyListMap:
return EmptyListMap[p]
assert isinstance(p, InstanceType), "Can only create lists of instances"
if isinstance(p.typ, ListType):
el = empty_list(p.typ.typ)
return plt.EmptyListList(uplc.BuiltinList([], el.sample_value))
if isinstance(p.typ, DictType):
return plt.EmptyListList(
uplc.BuiltinList(
[],
uplc.BuiltinPair(
uplc.PlutusConstr(0, frozenlist([])),
uplc.PlutusConstr(0, frozenlist([])),
),
)
)
if (
isinstance(p.typ, RecordType)
or isinstance(p.typ, AnyType)
or isinstance(p.typ, UnionType)
):
return plt.EmptyDataList()
raise NotImplementedError(f"Empty lists of type {p} can't be constructed yet")
TransformExtParamsMap = {
IntegerInstanceType: lambda x: plt.UnIData(x),
ByteStringInstanceType: lambda x: plt.UnBData(x),
StringInstanceType: lambda x: plt.DecodeUtf8(plt.UnBData(x)),
UnitInstanceType: lambda x: plt.Apply(OLambda(["_"], plt.Unit())),
BoolInstanceType: lambda x: plt.NotEqualsInteger(plt.UnIData(x), plt.Integer(0)),
}
def transform_ext_params_map(p: Type):
assert isinstance(
p, InstanceType
), "Can only transform instances, not classes as input"
if p in TransformExtParamsMap:
return TransformExtParamsMap[p]
if isinstance(p.typ, ListType):
list_int_typ = p.typ.typ
return lambda x: plt.MapList(
plt.UnListData(x),
OLambda(["x"], transform_ext_params_map(list_int_typ)(OVar("x"))),
empty_list(p.typ.typ),
)
if isinstance(p.typ, DictType):
# there doesn't appear to be a constructor function to make Pair a b for any types
# so pairs will always contain Data
return lambda x: plt.UnMapData(x)
return lambda x: x
TransformOutputMap = {
StringInstanceType: lambda x: plt.BData(plt.EncodeUtf8(x)),
IntegerInstanceType: lambda x: plt.IData(x),
ByteStringInstanceType: lambda x: plt.BData(x),
UnitInstanceType: lambda x: plt.Apply(
OLambda(["_"], plt.ConstrData(plt.Integer(0), plt.EmptyDataList())), x
),
BoolInstanceType: lambda x: plt.IData(
plt.IfThenElse(x, plt.Integer(1), plt.Integer(0))
),
}
def transform_output_map(p: Type):
assert isinstance(
p, InstanceType
), "Can only transform instances, not classes as input"
if isinstance(p.typ, FunctionType) or isinstance(p.typ, PolymorphicFunction):
raise NotImplementedError(
"Can not map functions into PlutusData and hence not return them from a function as Anything"
)
if p in TransformOutputMap:
return TransformOutputMap[p]
if isinstance(p.typ, ListType):
list_int_typ = p.typ.typ
return lambda x: plt.ListData(
plt.MapList(
x,
OLambda(["x"], transform_output_map(list_int_typ)(OVar("x"))),
),
)
if isinstance(p.typ, DictType):
# there doesn't appear to be a constructor function to make Pair a b for any types
# so pairs will always contain Data
return lambda x: plt.MapData(x)
return lambda x: x
Functions
def ByteStrIntMulImpl(x: pluthon.pluthon_ast.AST, y: pluthon.pluthon_ast.AST)
def PowImpl(x: pluthon.pluthon_ast.AST, y: pluthon.pluthon_ast.AST)
def StrIntMulImpl(x: pluthon.pluthon_ast.AST, y: pluthon.pluthon_ast.AST)
def empty_list(p: Type)
def repeated_addition(zero, add)
def transform_ext_params_map(p: Type)
def transform_output_map(p: Type)
Classes
class AnyType
-
The top element in the partial order on types (excluding FunctionTypes, which do not compare to anything)
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class AnyType(ClassType): """The top element in the partial order on types (excluding FunctionTypes, which do not compare to anything)""" def id_map(self, skip_constructor: bool = False) -> str: return "any" def attribute_type(self, attr: str) -> Type: """The types of the named attributes of this class""" if attr == "CONSTR_ID": return IntegerInstanceType return super().attribute_type(attr) def attribute(self, attr: str) -> plt.AST: """The attributes of this class. Need to be a lambda that expects as first argument the object itself""" if attr == "CONSTR_ID": # access to constructor return OLambda( ["self"], plt.Constructor(OVar("self")), ) return super().attribute(attr) def __ge__(self, other): return ( isinstance(other, ClassType) and not isinstance(other, FunctionType) and not isinstance(other, PolymorphicFunctionType) ) def cmp(self, op: cmpop, o: "Type") -> plt.AST: """The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison.""" # this will reject comparisons that will always be false - most likely due to faults during programming if ( (isinstance(o, RecordType)) or isinstance(o, UnionType) or isinstance(o, AnyType) ): # Note that comparison with Record and UnionType is actually fine because both are Data if isinstance(op, Eq): return plt.BuiltIn(uplc.BuiltInFun.EqualsData) if isinstance(op, NotEq): return OLambda( ["x", "y"], plt.Not( plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsData), OVar("x"), OVar("y"), ) ), ) if ( isinstance(o, ListType) and isinstance(o.typ, InstanceType) and (o.typ.typ >= self or self >= o.typ.typ) ): if isinstance(op, In): return OLambda( ["x", "y"], plt.AnyList( OVar("y"), plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsData), OVar("x"), ), ), ) if isinstance(op, NotIn): return OLambda( ["x", "y"], plt.Not( plt.AnyList( OVar("y"), plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsData), OVar("x"), ), ), ), ) return super().cmp(op, o) def stringify(self, recursive: bool = False) -> plt.AST: OPSHIN_LOGGER.warning( "Serializing AnyType will result in RawPlutusData (CBOR representation) to be printed without additional type information. Annotate types where possible to avoid this warning." ) return OLambda( ["self"], OLet( [ ( "joinMapList", OLambda( ["m", "l", "start", "end"], OLet( [ ( "g", plt.RecFun( OLambda( ["f", "l"], plt.AppendString( plt.Apply( OVar("m"), plt.HeadList(OVar("l")), ), OLet( [ ( "t", plt.TailList(OVar("l")), ) ], plt.IteNullList( OVar("t"), OVar("end"), plt.AppendString( plt.Text(", "), plt.Apply( OVar("f"), OVar("f"), OVar("t"), ), ), ), ), ), ) ), ) ], plt.AppendString( OVar("start"), plt.IteNullList( OVar("l"), OVar("end"), plt.Apply( OVar("g"), OVar("l"), ), ), ), ), ), ), ( "stringifyPlutusData", plt.RecFun( OLambda( ["f", "d"], plt.DelayedChooseData( OVar("d"), OLet( [ ( "constructor", plt.FstPair( plt.UnConstrData(OVar("d")) ), ) ], plt.Ite( plt.LessThanInteger( OVar("constructor"), plt.Integer(128), ), plt.ConcatString( plt.Text("CBORTag("), plt.Apply( OVar("f"), OVar("f"), plt.IData( plt.AddInteger( OVar("constructor"), plt.Ite( plt.LessThanInteger( OVar("constructor"), plt.Integer(7), ), plt.Integer(121), plt.Integer(1280 - 7), ), ) ), ), plt.Text(", "), plt.Apply( OVar("f"), OVar("f"), plt.ListData( plt.SndPair( plt.UnConstrData(OVar("d")) ) ), ), plt.Text(")"), ), plt.ConcatString( plt.Text("CBORTag(102, "), plt.Apply( OVar("f"), OVar("f"), plt.ListData( plt.MkCons( plt.IData( OVar("constructor") ), plt.MkCons( plt.ListData( plt.SndPair( plt.UnConstrData( OVar("d") ) ) ), plt.EmptyDataList(), ), ) ), ), plt.Text(")"), ), ), ), plt.Apply( OVar("joinMapList"), OLambda( ["x"], plt.ConcatString( plt.Apply( OVar("f"), OVar("f"), plt.FstPair(OVar("x")), ), plt.Text(": "), plt.Apply( OVar("f"), OVar("f"), plt.SndPair(OVar("x")), ), ), ), plt.UnMapData(OVar("d")), plt.Text("{"), plt.Text("}"), ), plt.Apply( OVar("joinMapList"), OLambda( ["x"], plt.Apply( OVar("f"), OVar("f"), OVar("x"), ), ), plt.UnListData(OVar("d")), plt.Text("["), plt.Text("]"), ), plt.Apply( IntegerInstanceType.stringify(recursive=True), plt.UnIData(OVar("d")), ), plt.Apply( ByteStringInstanceType.stringify( recursive=True ), plt.UnBData(OVar("d")), ), ), ) ), ), ], plt.ConcatString( plt.Text("RawPlutusData(data="), plt.Apply(OVar("stringifyPlutusData"), OVar("self")), plt.Text(")"), ), ), )
Ancestors
Methods
def attribute(self, attr: str) ‑> pluthon.pluthon_ast.AST
-
The attributes of this class. Need to be a lambda that expects as first argument the object itself
def attribute_type(self, attr: str) ‑> Type
-
Inherited from:
ClassType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
ClassType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
ClassType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
ClassType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
ClassType
.unop_type
Type of a unary operation on self.
class AtomicType
-
AtomicType()
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class AtomicType(ClassType): def __ge__(self, other): # Can only substitute for its own type (also subtypes) return isinstance(other, self.__class__)
Ancestors
Subclasses
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
ClassType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
ClassType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
ClassType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
ClassType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
ClassType
.unop_type
Type of a unary operation on self.
class BoolImpl (*args, **kwargs)
-
Expand source code
class BoolImpl(PolymorphicFunction): def type_from_args(self, args: typing.List[Type]) -> FunctionType: assert ( len(args) == 1 ), f"'bool' takes only one argument, but {len(args)} were given" typ = args[0] assert isinstance(typ, InstanceType), "Can only create bools from instances" assert any( isinstance(typ.typ, t) for t in ( IntegerType, StringType, ByteStringType, BoolType, UnitType, ListType, DictType, ) ), "Can only create bools from int, str, bool, bytes, None, list or dict" return FunctionType(args, BoolInstanceType) def impl_from_args(self, args: typing.List[Type]) -> plt.AST: arg = args[0] assert isinstance(arg, InstanceType), "Can only create bools from instances" if isinstance(arg.typ, BoolType): return OLambda(["x"], OVar("x")) elif isinstance(arg.typ, IntegerType): return OLambda(["x"], plt.NotEqualsInteger(OVar("x"), plt.Integer(0))) elif isinstance(arg.typ, StringType): return OLambda( ["x"], plt.NotEqualsInteger( plt.LengthOfByteString(plt.EncodeUtf8(OVar("x"))), plt.Integer(0) ), ) elif isinstance(arg.typ, ByteStringType): return OLambda( ["x"], plt.NotEqualsInteger(plt.LengthOfByteString(OVar("x")), plt.Integer(0)), ) elif isinstance(arg.typ, ListType) or isinstance(arg.typ, DictType): return OLambda(["x"], plt.Not(plt.NullList(OVar("x")))) elif isinstance(arg.typ, UnitType): return OLambda(["x"], plt.Bool(False)) else: raise NotImplementedError( f"Can not derive bool from type {arg.typ.__name__}" )
Ancestors
Methods
def impl_from_args(self, args: List[Type]) ‑> pluthon.pluthon_ast.AST
def type_from_args(self, args: List[Type]) ‑> FunctionType
class BoolType
-
BoolType()
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class BoolType(AtomicType): def constr_type(self) -> "InstanceType": return InstanceType(PolymorphicFunctionType(BoolImpl())) def cmp(self, op: cmpop, o: "Type") -> plt.AST: if isinstance(o, IntegerType): if isinstance(op, Eq): # 1 == True # 0 == False # all other comparisons are False return OLambda( ["y", "x"], plt.Ite( OVar("y"), plt.EqualsInteger(OVar("x"), plt.Integer(1)), plt.EqualsInteger(OVar("x"), plt.Integer(0)), ), ) if isinstance(op, NotEq): return OLambda( ["y", "x"], plt.Ite( OVar("y"), plt.NotEqualsInteger(OVar("x"), plt.Integer(1)), plt.NotEqualsInteger(OVar("x"), plt.Integer(0)), ), ) if isinstance(o, BoolType): if isinstance(op, Eq): return OLambda(["x", "y"], plt.Iff(OVar("x"), OVar("y"))) if isinstance(op, NotEq): return OLambda(["x", "y"], plt.Not(plt.Iff(OVar("x"), OVar("y")))) if isinstance(op, Lt): return OLambda(["x", "y"], plt.And(plt.Not(OVar("x")), OVar("y"))) if isinstance(op, Gt): return OLambda(["x", "y"], plt.And(OVar("x"), plt.Not(OVar("y")))) return super().cmp(op, o) def stringify(self, recursive: bool = False) -> plt.AST: return OLambda( ["self"], plt.Ite( OVar("self"), plt.Text("True"), plt.Text("False"), ), ) def _unop_return_type(self, unop: unaryop) -> "Type": if isinstance(unop, Not): return BoolType() return super()._unop_return_type(unop) def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]: if isinstance(unop, Not): return plt.Not return super()._unop_fun(unop)
Ancestors
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
AtomicType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
AtomicType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.cmp
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
AtomicType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
AtomicType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
AtomicType
.unop_type
Type of a unary operation on self.
class ByteStringType
-
ByteStringType()
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class ByteStringType(AtomicType): def id_map(self, skip_constructor: bool = False) -> str: return "bytes" def constr_type(self) -> InstanceType: return InstanceType(PolymorphicFunctionType(BytesImpl())) def attribute_type(self, attr) -> Type: if attr == "decode": return InstanceType(FunctionType(frozenlist([]), StringInstanceType)) if attr == "hex": return InstanceType(FunctionType(frozenlist([]), StringInstanceType)) if attr == "fromhex": return InstanceType( FunctionType( frozenlist([StringInstanceType]), ByteStringInstanceType, ) ) return super().attribute_type(attr) def attribute(self, attr) -> plt.AST: if attr == "decode": # No codec -> only the default (utf8) is allowed return OLambda(["x", "_"], plt.DecodeUtf8(OVar("x"))) if attr == "hex": return OLambda( ["x", "_"], plt.DecodeUtf8( OLet( [ ( "hexlist", plt.RecFun( OLambda( ["f", "i"], plt.Ite( plt.LessThanInteger( OVar("i"), plt.Integer(0) ), plt.EmptyIntegerList(), plt.MkCons( plt.IndexByteString( OVar("x"), OVar("i") ), plt.Apply( OVar("f"), OVar("f"), plt.SubtractInteger( OVar("i"), plt.Integer(1) ), ), ), ), ), ), ), ( "map_str", OLambda( ["i"], plt.AddInteger( OVar("i"), plt.IfThenElse( plt.LessThanInteger( OVar("i"), plt.Integer(10) ), plt.Integer(ord("0")), plt.Integer(ord("a") - 10), ), ), ), ), ( "mkstr", OLambda( ["i"], plt.FoldList( plt.Apply(OVar("hexlist"), OVar("i")), OLambda( ["b", "i"], plt.ConsByteString( plt.Apply( OVar("map_str"), plt.DivideInteger( OVar("i"), plt.Integer(16) ), ), plt.ConsByteString( plt.Apply( OVar("map_str"), plt.ModInteger( OVar("i"), plt.Integer(16), ), ), OVar("b"), ), ), ), plt.ByteString(b""), ), ), ), ], plt.Apply( OVar("mkstr"), plt.SubtractInteger( plt.LengthOfByteString(OVar("x")), plt.Integer(1) ), ), ), ), ) if attr == "fromhex": return OLambda( ["_", "x"], OLet( [ ( "bytestr", plt.EncodeUtf8(plt.Force(OVar("x"))), ), ( "bytestr_len", plt.LengthOfByteString(OVar("bytestr")), ), ( "char_to_int", OLambda( ["c"], plt.Ite( plt.And( plt.LessThanEqualsInteger( plt.Integer(ord("a")), OVar("c") ), plt.LessThanEqualsInteger( OVar("c"), plt.Integer(ord("f")) ), ), plt.AddInteger( plt.SubtractInteger( OVar("c"), plt.Integer(ord("a")) ), plt.Integer(10), ), plt.Ite( plt.And( plt.LessThanEqualsInteger( plt.Integer(ord("0")), OVar("c") ), plt.LessThanEqualsInteger( OVar("c"), plt.Integer(ord("9")) ), ), plt.SubtractInteger( OVar("c"), plt.Integer(ord("0")) ), plt.Ite( plt.And( plt.LessThanEqualsInteger( plt.Integer(ord("A")), OVar("c") ), plt.LessThanEqualsInteger( OVar("c"), plt.Integer(ord("F")) ), ), plt.AddInteger( plt.SubtractInteger( OVar("c"), plt.Integer(ord("A")) ), plt.Integer(10), ), plt.TraceError("Invalid hex character"), ), ), ), ), ), ( "splitlist", plt.RecFun( OLambda( ["f", "i"], plt.Ite( plt.LessThanInteger( OVar("bytestr_len"), plt.AddInteger(OVar("i"), plt.Integer(1)), ), plt.ByteString(b""), plt.Ite( plt.LessThanInteger( OVar("bytestr_len"), plt.AddInteger( OVar("i"), plt.Integer(2) ), ), plt.TraceError("Invalid hex string"), OLet( [ ( "char_at_i", plt.IndexByteString( OVar("bytestr"), OVar("i"), ), ), ( "char_at_ip1", plt.IndexByteString( OVar("bytestr"), plt.AddInteger( OVar("i"), plt.Integer(1), ), ), ), ], plt.ConsByteString( plt.AddInteger( plt.MultiplyInteger( plt.Apply( OVar("char_to_int"), OVar("char_at_i"), ), plt.Integer(16), ), plt.Apply( OVar("char_to_int"), OVar("char_at_ip1"), ), ), plt.Apply( OVar("f"), OVar("f"), plt.AddInteger( OVar("i"), plt.Integer(2), ), ), ), ), ), ), ) ), ), ], plt.Apply(OVar("splitlist"), plt.Integer(0)), ), ) return super().attribute(attr) def cmp(self, op: cmpop, o: "Type") -> plt.AST: if isinstance(o, ByteStringType): if isinstance(op, Eq): return plt.BuiltIn(uplc.BuiltInFun.EqualsByteString) if isinstance(op, NotEq): return OLambda( ["x", "y"], plt.Not( plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsByteString), OVar("y"), OVar("x"), ) ), ) if isinstance(op, Lt): return plt.BuiltIn(uplc.BuiltInFun.LessThanByteString) if isinstance(op, LtE): return plt.BuiltIn(uplc.BuiltInFun.LessThanEqualsByteString) if isinstance(op, Gt): return OLambda( ["x", "y"], plt.Apply( plt.BuiltIn(uplc.BuiltInFun.LessThanByteString), OVar("y"), OVar("x"), ), ) if isinstance(op, GtE): return OLambda( ["x", "y"], plt.Apply( plt.BuiltIn(uplc.BuiltInFun.LessThanEqualsByteString), OVar("y"), OVar("x"), ), ) if ( isinstance(o, ListType) and isinstance(o.typ, InstanceType) and isinstance(o.typ.typ, ByteStringType) ): if isinstance(op, In): return OLambda( ["x", "y"], plt.AnyList( OVar("y"), plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsByteString), OVar("x"), ), ), ) if isinstance(op, NotIn): return OLambda( ["x", "y"], plt.Not( plt.AnyList( OVar("y"), plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsByteString), OVar("x"), ), ), ), ) return super().cmp(op, o) def stringify(self, recursive: bool = False) -> plt.AST: return OLambda( ["x"], plt.DecodeUtf8( OLet( [ ( "hexlist", plt.RecFun( OLambda( ["f", "i"], plt.Ite( plt.LessThanInteger(OVar("i"), plt.Integer(0)), plt.EmptyIntegerList(), plt.MkCons( plt.IndexByteString(OVar("x"), OVar("i")), plt.Apply( OVar("f"), OVar("f"), plt.SubtractInteger( OVar("i"), plt.Integer(1) ), ), ), ), ), ), ), ( "map_str", OLambda( ["i"], plt.AddInteger( OVar("i"), plt.IfThenElse( plt.LessThanInteger(OVar("i"), plt.Integer(10)), plt.Integer(ord("0")), plt.Integer(ord("a") - 10), ), ), ), ), ( "mkstr", OLambda( ["i"], plt.FoldList( plt.Apply(OVar("hexlist"), OVar("i")), OLambda( ["b", "i"], plt.Ite( # ascii printable characters are kept unmodified plt.And( plt.LessThanEqualsInteger( plt.Integer(0x20), OVar("i") ), plt.LessThanEqualsInteger( OVar("i"), plt.Integer(0x7E) ), ), plt.Ite( plt.EqualsInteger( OVar("i"), plt.Integer(ord("\\")), ), plt.AppendByteString( plt.ByteString(b"\\\\"), OVar("b"), ), plt.Ite( plt.EqualsInteger( OVar("i"), plt.Integer(ord("'")), ), plt.AppendByteString( plt.ByteString(b"\\'"), OVar("b"), ), plt.ConsByteString( OVar("i"), OVar("b") ), ), ), plt.Ite( plt.EqualsInteger( OVar("i"), plt.Integer(ord("\t")) ), plt.AppendByteString( plt.ByteString(b"\\t"), OVar("b") ), plt.Ite( plt.EqualsInteger( OVar("i"), plt.Integer(ord("\n")), ), plt.AppendByteString( plt.ByteString(b"\\n"), OVar("b"), ), plt.Ite( plt.EqualsInteger( OVar("i"), plt.Integer(ord("\r")), ), plt.AppendByteString( plt.ByteString(b"\\r"), OVar("b"), ), plt.AppendByteString( plt.ByteString(b"\\x"), plt.ConsByteString( plt.Apply( OVar("map_str"), plt.DivideInteger( OVar("i"), plt.Integer(16), ), ), plt.ConsByteString( plt.Apply( OVar("map_str"), plt.ModInteger( OVar("i"), plt.Integer( 16 ), ), ), OVar("b"), ), ), ), ), ), ), ), ), plt.ByteString(b""), ), ), ), ], plt.ConcatByteString( plt.ByteString(b"b'"), plt.Apply( OVar("mkstr"), plt.SubtractInteger( plt.LengthOfByteString(OVar("x")), plt.Integer(1) ), ), plt.ByteString(b"'"), ), ), ), ) def _binop_return_type(self, binop: operator, other: "Type") -> "Type": if isinstance(binop, Add): if other == ByteStringInstanceType: return ByteStringType() if isinstance(binop, Mult): if other == IntegerInstanceType: return ByteStringType() return super().binop_type(binop, other) def _binop_bin_fun(self, binop: operator, other: AST): if isinstance(binop, Add): if other.typ == ByteStringInstanceType: return plt.AppendByteString if isinstance(binop, Mult): if other.typ == IntegerInstanceType: return ByteStrIntMulImpl def _unop_return_type(self, unop: unaryop) -> "Type": if isinstance(unop, Not): return BoolType() return super()._unop_return_type(unop) def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]: if isinstance(unop, Not): return lambda x: plt.EqualsInteger( plt.LengthOfByteString(x), plt.Integer(0) ) return super()._unop_fun(unop)
Ancestors
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
AtomicType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
AtomicType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.cmp
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
AtomicType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
AtomicType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
AtomicType
.unop_type
Type of a unary operation on self.
class BytesImpl (*args, **kwargs)
-
Expand source code
class BytesImpl(PolymorphicFunction): def type_from_args(self, args: typing.List[Type]) -> FunctionType: assert ( len(args) == 1 ), f"'bytes' takes only one argument, but {len(args)} were given" typ = args[0] assert isinstance(typ, InstanceType), "Can only create bools from instances" assert any( isinstance(typ.typ, t) for t in ( IntegerType, ByteStringType, ListType, ) ), "Can only create bytes from int, bytes or integer lists" if isinstance(typ.typ, ListType): assert ( typ.typ.typ == IntegerInstanceType ), "Can only create bytes from integer lists but got a list with another type" return FunctionType(args, ByteStringInstanceType) def impl_from_args(self, args: typing.List[Type]) -> plt.AST: arg = args[0] assert isinstance(arg, InstanceType), "Can only create bytes from instances" if isinstance(arg.typ, ByteStringType): return OLambda(["x"], OVar("x")) elif isinstance(arg.typ, IntegerType): return OLambda( ["x"], plt.Ite( plt.LessThanInteger(OVar("x"), plt.Integer(0)), plt.TraceError("ValueError: negative count"), ByteStrIntMulImpl(plt.ByteString(b"\x00"), OVar("x")), ), ) elif isinstance(arg.typ, ListType): return OLambda( ["xs"], plt.RFoldList( OVar("xs"), OLambda(["a", "x"], plt.ConsByteString(OVar("x"), OVar("a"))), plt.ByteString(b""), ), ) else: raise NotImplementedError( f"Can not derive bytes from type {arg.typ.__name__}" )
Ancestors
Methods
def impl_from_args(self, args: List[Type]) ‑> pluthon.pluthon_ast.AST
def type_from_args(self, args: List[Type]) ‑> FunctionType
class ClassType
-
ClassType()
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class ClassType(Type): def __ge__(self, other): """ Returns whether other can be substituted for this type. In other words this returns whether the interface of this type is a subset of the interface of other. Note that this is usually <= and not >=, but this needs to be fixed later. Produces a partial order on types. The top element is the most generic type and can not substitute for anything. The bottom element is the most specific type and can be substituted for anything. """ raise NotImplementedError("Comparison between raw classtypes impossible") def copy_only_attributes(self) -> plt.AST: """ Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record types and union types, this is the identity function. """ return OLambda(["self"], OVar("self"))
Ancestors
Subclasses
- HashType
- AnyType
- AtomicType
- DictType
- FunctionType
- InaccessibleType
- ListType
- PairType
- PolymorphicFunctionType
- RecordType
- TupleType
- UnionType
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
Type
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
Type
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
Type
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
Type
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record types and union types, this is the identity function.
def id_map(self, skip_constructor: bool = False) ‑> str
-
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
Type
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
Type
.unop_type
Type of a unary operation on self.
class DictType (key_typ: Type, value_typ: Type)
-
DictType(key_typ: opshin.type_impls.Type, value_typ: opshin.type_impls.Type)
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class DictType(ClassType): key_typ: Type value_typ: Type def id_map(self, skip_constructor: bool = False) -> str: return "map<" + self.key_typ.id_map() + "," + self.value_typ.id_map() + ">" def attribute_type(self, attr) -> "Type": if attr == "get": return InstanceType( FunctionType(frozenlist([self.key_typ, self.value_typ]), self.value_typ) ) if attr == "keys": return InstanceType( FunctionType(frozenlist([]), InstanceType(ListType(self.key_typ))) ) if attr == "values": return InstanceType( FunctionType(frozenlist([]), InstanceType(ListType(self.value_typ))) ) if attr == "items": return InstanceType( FunctionType( frozenlist([]), InstanceType( ListType(InstanceType(PairType(self.key_typ, self.value_typ))) ), ) ) raise TypeInferenceError( f"Type of attribute '{attr}' is unknown for type Dict." ) def attribute(self, attr) -> plt.AST: if attr == "get": return OLambda( ["self", "key", "default"], transform_ext_params_map(self.value_typ)( OLet( [ ( "key_mapped", transform_output_map(self.key_typ)( plt.Force(OVar("key")) ), ) ], plt.SndPair( plt.FindList( OVar("self"), OLambda( ["x"], plt.EqualsData( OVar("key_mapped"), plt.FstPair(OVar("x")), ), ), # this is a bit ugly... we wrap - only to later unwrap again plt.MkPairData( OVar("key_mapped"), transform_output_map(self.value_typ)( plt.Force(OVar("default")) ), ), ), ), ), ), ) if attr == "keys": return OLambda( ["self", "_"], plt.MapList( OVar("self"), OLambda( ["x"], transform_ext_params_map(self.key_typ)(plt.FstPair(OVar("x"))), ), empty_list(self.key_typ), ), ) if attr == "values": return OLambda( ["self", "_"], plt.MapList( OVar("self"), OLambda( ["x"], transform_ext_params_map(self.value_typ)( plt.SndPair(OVar("x")) ), ), empty_list(self.value_typ), ), ) if attr == "items": return OLambda( ["self", "_"], OVar("self"), ) raise NotImplementedError(f"Attribute '{attr}' of Dict is unknown.") def __ge__(self, other): return ( isinstance(other, DictType) and self.key_typ >= other.key_typ and self.value_typ >= other.value_typ ) def stringify(self, recursive: bool = False) -> plt.AST: return OLambda( ["self"], OLet( [ ( "g", plt.RecFun( OLambda( ["f", "l"], OLet( [ ("h", plt.HeadList(OVar("l"))), ("t", plt.TailList(OVar("l"))), ], plt.ConcatString( plt.Apply( self.key_typ.stringify(recursive=True), transform_ext_params_map(self.key_typ)( plt.FstPair(OVar("h")) ), ), plt.Text(": "), plt.Apply( self.value_typ.stringify(recursive=True), transform_ext_params_map(self.value_typ)( plt.SndPair(OVar("h")) ), ), plt.IteNullList( OVar("t"), plt.Text("}"), plt.AppendString( plt.Text(", "), plt.Apply( OVar("f"), OVar("f"), OVar("t"), ), ), ), ), ), ) ), ) ], plt.AppendString( plt.Text("{"), plt.IteNullList( OVar("self"), plt.Text("}"), plt.Apply( OVar("g"), OVar("self"), ), ), ), ), ) def copy_only_attributes(self) -> plt.AST: def CustomMapFilterList( l: plt.AST, filter_op: plt.AST, map_op: plt.AST, empty_list=plt.EmptyDataList(), ): from pluthon import ( Apply, Lambda as PLambda, RecFun, IteNullList, Var as PVar, HeadList, Ite, TailList, PrependList, Let as PLet, ) """ Apply a filter and a map function on each element in a list (throws out all that evaluate to false) Performs only a single pass and is hence much more efficient than filter + map """ return Apply( PLambda( ["filter", "map"], RecFun( PLambda( ["filtermap", "xs"], IteNullList( PVar("xs"), empty_list, PLet( [ ("head", HeadList(PVar("xs"))), ("tail", TailList(PVar("xs"))), ], Ite( Apply( PVar("filter"), PVar("head"), PVar("tail") ), PrependList( Apply(PVar("map"), PVar("head")), Apply( PVar("filtermap"), PVar("filtermap"), PVar("tail"), ), ), Apply( PVar("filtermap"), PVar("filtermap"), PVar("tail"), ), ), ), ), ), ), ), filter_op, map_op, l, ) mapped_attrs = CustomMapFilterList( OVar("self"), OLambda( ["h", "t"], OLet( [ ("hfst", plt.FstPair(OVar("h"))), ], plt.Not( plt.AnyList( OVar("t"), OLambda( ["e"], plt.EqualsData(OVar("hfst"), plt.FstPair(OVar("e"))), ), ) ), ), ), OLambda( ["v"], plt.MkPairData( transform_output_map(self.key_typ)( plt.Apply( self.key_typ.copy_only_attributes(), transform_ext_params_map(self.key_typ)( plt.FstPair(OVar("v")) ), ) ), transform_output_map(self.value_typ)( plt.Apply( self.value_typ.copy_only_attributes(), transform_ext_params_map(self.value_typ)( plt.SndPair(OVar("v")) ), ) ), ), ), plt.EmptyDataPairList(), ) return OLambda(["self"], mapped_attrs) def _unop_return_type(self, unop: unaryop) -> "Type": if isinstance(unop, Not): return BoolType() return super()._unop_return_type(unop) def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]: if isinstance(unop, Not): return lambda x: plt.IteNullList(x, plt.Bool(True), plt.Bool(False)) return super()._unop_fun(unop)
Ancestors
Class variables
var key_typ : Type
var value_typ : Type
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
ClassType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
ClassType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
ClassType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
ClassType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
ClassType
.unop_type
Type of a unary operation on self.
class FunctionType (argtyps: List[Type], rettyp: Type, bound_vars: Dict[str, Type] = <factory>, bind_self: str | None = None)
-
FunctionType(argtyps: List[opshin.type_impls.Type], rettyp: opshin.type_impls.Type, bound_vars: Dict[str, opshin.type_impls.Type] =
, bind_self: Optional[str] = None) Expand source code
@dataclass(frozen=True, unsafe_hash=True) class FunctionType(ClassType): argtyps: typing.List[Type] rettyp: Type # A map from external variable names to their types when the function is defined bound_vars: typing.Dict[str, Type] = dataclasses.field(default_factory=frozendict) # Whether and under which name the function binds itself # The type of this variable is "self" bind_self: typing.Optional[str] = None def __post_init__(self): object.__setattr__(self, "argtyps", frozenlist(self.argtyps)) object.__setattr__(self, "bound_vars", frozendict(self.bound_vars)) def __ge__(self, other): return ( isinstance(other, FunctionType) and len(self.argtyps) == len(other.argtyps) and all(a >= oa for a, oa in zip(self.argtyps, other.argtyps)) and self.bound_vars.keys() == other.bound_vars.keys() and all(sbv >= other.bound_vars[k] for k, sbv in self.bound_vars.items()) and self.bind_self == other.bind_self and other.rettyp >= self.rettyp ) def stringify(self, recursive: bool = False) -> plt.AST: return OLambda(["x"], plt.Text("<function>"))
Ancestors
Class variables
var argtyps : List[Type]
var bind_self : str | None
var bound_vars : Dict[str, Type]
var rettyp : Type
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
ClassType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
ClassType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
ClassType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
ClassType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
ClassType
.unop_type
Type of a unary operation on self.
class InaccessibleType
-
A type that blocks overwriting of a function
Expand source code
class InaccessibleType(ClassType): """A type that blocks overwriting of a function""" pass
Ancestors
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
ClassType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
ClassType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
ClassType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
ClassType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
ClassType
.unop_type
Type of a unary operation on self.
class InstanceType (typ: ClassType)
-
InstanceType(typ: opshin.type_impls.ClassType)
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class InstanceType(Type): typ: ClassType def id_map(self, skip_constructor: bool = False) -> str: return self.typ.id_map(skip_constructor=skip_constructor) def constr_type(self) -> FunctionType: raise TypeInferenceError(f"Can not construct an instance {self}") def constr(self) -> plt.AST: raise NotImplementedError(f"Can not construct an instance {self}") def attribute_type(self, attr) -> Type: return self.typ.attribute_type(attr) def attribute(self, attr) -> plt.AST: return self.typ.attribute(attr) def cmp(self, op: cmpop, o: "Type") -> plt.AST: """The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison.""" if isinstance(o, InstanceType): return self.typ.cmp(op, o.typ) return super().cmp(op, o) def __ge__(self, other): return isinstance(other, InstanceType) and self.typ >= other.typ def stringify(self, recursive: bool = False) -> plt.AST: return self.typ.stringify(recursive=recursive) def copy_only_attributes(self) -> plt.AST: return self.typ.copy_only_attributes() def binop_type(self, binop: operator, other: "Type") -> "Type": return self.typ.binop_type(binop, other) def binop(self, binop: operator, other: AST) -> plt.AST: return self.typ.binop(binop, other) def unop_type(self, unop: unaryop) -> "Type": return self.typ.unop_type(unop) def unop(self, unop: unaryop) -> plt.AST: return self.typ.unop(unop)
Ancestors
Subclasses
Class variables
var typ : ClassType
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
Type
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
Type
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
Type
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
The constructor for this class
def constr_type(self) ‑> FunctionType
-
Inherited from:
Type
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
Type
.copy_only_attributes
Pluthon function that returns a copy of only the attributes of the object
def id_map(self, skip_constructor: bool = False) ‑> str
-
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
Type
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
Type
.unop_type
Type of a unary operation on self.
class IntImpl (*args, **kwargs)
-
Expand source code
class IntImpl(PolymorphicFunction): def type_from_args(self, args: typing.List[Type]) -> FunctionType: assert ( len(args) == 1 ), f"'int' takes only one argument, but {len(args)} were given" typ = args[0] assert isinstance(typ, InstanceType), "Can only create ints from instances" assert any( isinstance(typ.typ, t) for t in (IntegerType, StringType, BoolType) ), "Can only create integers from int, str or bool" return FunctionType(args, IntegerInstanceType) def impl_from_args(self, args: typing.List[Type]) -> plt.AST: arg = args[0] assert isinstance(arg, InstanceType), "Can only create ints from instances" if isinstance(arg.typ, IntegerType): return OLambda(["x"], OVar("x")) elif isinstance(arg.typ, BoolType): return OLambda( ["x"], plt.IfThenElse(OVar("x"), plt.Integer(1), plt.Integer(0)) ) elif isinstance(arg.typ, StringType): return OLambda( ["x"], OLet( [ ("e", plt.EncodeUtf8(OVar("x"))), ("len", plt.LengthOfByteString(OVar("e"))), ( "first_int", plt.Ite( plt.LessThanInteger(plt.Integer(0), OVar("len")), plt.IndexByteString(OVar("e"), plt.Integer(0)), plt.Integer(ord("_")), ), ), ( "last_int", plt.IndexByteString( OVar("e"), plt.SubtractInteger(OVar("len"), plt.Integer(1)), ), ), ( "fold_start", OLambda( ["start"], plt.FoldList( plt.Range(OVar("len"), OVar("start")), OLambda( ["s", "i"], OLet( [ ( "b", plt.IndexByteString( OVar("e"), OVar("i") ), ) ], plt.Ite( plt.EqualsInteger( OVar("b"), plt.Integer(ord("_")) ), OVar("s"), plt.Ite( plt.Or( plt.LessThanInteger( OVar("b"), plt.Integer(ord("0")), ), plt.LessThanInteger( plt.Integer(ord("9")), OVar("b"), ), ), plt.TraceError( "ValueError: invalid literal for int() with base 10" ), plt.AddInteger( plt.SubtractInteger( OVar("b"), plt.Integer(ord("0")), ), plt.MultiplyInteger( OVar("s"), plt.Integer(10), ), ), ), ), ), ), plt.Integer(0), ), ), ), ], plt.Ite( plt.Or( plt.Or( plt.EqualsInteger( OVar("first_int"), plt.Integer(ord("_")), ), plt.EqualsInteger( OVar("last_int"), plt.Integer(ord("_")), ), ), plt.And( plt.EqualsInteger(OVar("len"), plt.Integer(1)), plt.Or( plt.EqualsInteger( OVar("first_int"), plt.Integer(ord("-")), ), plt.EqualsInteger( OVar("first_int"), plt.Integer(ord("+")), ), ), ), ), plt.TraceError( "ValueError: invalid literal for int() with base 10" ), plt.Ite( plt.EqualsInteger( OVar("first_int"), plt.Integer(ord("-")), ), plt.Negate( plt.Apply(OVar("fold_start"), plt.Integer(1)), ), plt.Ite( plt.EqualsInteger( OVar("first_int"), plt.Integer(ord("+")), ), plt.Apply(OVar("fold_start"), plt.Integer(1)), plt.Apply(OVar("fold_start"), plt.Integer(0)), ), ), ), ), ) else: raise NotImplementedError( f"Can not derive integer from type {arg.typ.__name__}" )
Ancestors
Methods
def impl_from_args(self, args: List[Type]) ‑> pluthon.pluthon_ast.AST
def type_from_args(self, args: List[Type]) ‑> FunctionType
class IntegerType
-
IntegerType()
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class IntegerType(AtomicType): def id_map(self, skip_constructor: bool = False) -> str: return "int" def constr_type(self) -> InstanceType: return InstanceType(PolymorphicFunctionType(IntImpl())) def cmp(self, op: cmpop, o: "Type") -> plt.AST: """The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison.""" if isinstance(o, BoolType): if isinstance(op, Eq): # 1 == True # 0 == False # all other comparisons are False return OLambda( ["x", "y"], plt.Ite( OVar("y"), plt.EqualsInteger(OVar("x"), plt.Integer(1)), plt.EqualsInteger(OVar("x"), plt.Integer(0)), ), ) if isinstance(o, IntegerType): if isinstance(op, Eq): return plt.BuiltIn(uplc.BuiltInFun.EqualsInteger) if isinstance(op, NotEq): return OLambda( ["x", "y"], plt.Not( plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsInteger), OVar("y"), OVar("x"), ) ), ) if isinstance(op, LtE): return plt.BuiltIn(uplc.BuiltInFun.LessThanEqualsInteger) if isinstance(op, Lt): return plt.BuiltIn(uplc.BuiltInFun.LessThanInteger) if isinstance(op, Gt): return OLambda( ["x", "y"], plt.Apply( plt.BuiltIn(uplc.BuiltInFun.LessThanInteger), OVar("y"), OVar("x"), ), ) if isinstance(op, GtE): return OLambda( ["x", "y"], plt.Apply( plt.BuiltIn(uplc.BuiltInFun.LessThanEqualsInteger), OVar("y"), OVar("x"), ), ) if ( isinstance(o, ListType) and isinstance(o.typ, InstanceType) and isinstance(o.typ.typ, IntegerType) ): if isinstance(op, In): return OLambda( ["x", "y"], plt.AnyList( OVar("y"), plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsInteger), OVar("x") ), ), ) if isinstance(op, NotIn): return OLambda( ["x", "y"], plt.Not( plt.AnyList( OVar("y"), plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsInteger), OVar("x") ), ), ), ) return super().cmp(op, o) def stringify(self, recursive: bool = False) -> plt.AST: return OLambda( ["x"], plt.DecodeUtf8( OLet( [ ( "strlist", plt.RecFun( OLambda( ["f", "i"], plt.Ite( plt.LessThanEqualsInteger( OVar("i"), plt.Integer(0) ), plt.EmptyIntegerList(), plt.MkCons( plt.AddInteger( plt.ModInteger( OVar("i"), plt.Integer(10) ), plt.Integer(ord("0")), ), plt.Apply( OVar("f"), OVar("f"), plt.DivideInteger( OVar("i"), plt.Integer(10) ), ), ), ), ), ), ), ( "mkstr", OLambda( ["i"], plt.FoldList( plt.Apply(OVar("strlist"), OVar("i")), OLambda( ["b", "i"], plt.ConsByteString(OVar("i"), OVar("b")), ), plt.ByteString(b""), ), ), ), ], plt.Ite( plt.EqualsInteger(OVar("x"), plt.Integer(0)), plt.ByteString(b"0"), plt.Ite( plt.LessThanInteger(OVar("x"), plt.Integer(0)), plt.ConsByteString( plt.Integer(ord("-")), plt.Apply(OVar("mkstr"), plt.Negate(OVar("x"))), ), plt.Apply(OVar("mkstr"), OVar("x")), ), ), ) ), ) def _binop_return_type(self, binop: operator, other: "Type") -> "Type": if ( isinstance(binop, Add) or isinstance(binop, Sub) or isinstance(binop, FloorDiv) or isinstance(binop, Mod) or isinstance(binop, Div) or isinstance(binop, Pow) ): if other == IntegerInstanceType: return IntegerType() elif other == BoolInstanceType: # cast to integer return IntegerType() if isinstance(binop, Mult): if other == IntegerInstanceType: return IntegerType() elif other == ByteStringInstanceType: return ByteStringType() elif other == StringInstanceType: return StringType() return super().binop_type(binop, other) def _binop_bin_fun(self, binop: operator, other: AST): if other.typ == IntegerInstanceType: if isinstance(binop, Add): return plt.AddInteger elif isinstance(binop, Sub): return plt.SubtractInteger elif isinstance(binop, FloorDiv): return plt.DivideInteger elif isinstance(binop, Mod): return plt.ModInteger elif isinstance(binop, Pow): return lambda x, y: OLet( [("y", y)], plt.Ite( plt.LessThanInteger(OVar("y"), plt.Integer(0)), plt.TraceError("Negative exponentiation is not supported"), PowImpl(x, OVar("y")), ), ) if other.typ == BoolInstanceType: if isinstance(binop, Add): return lambda x, y: OLet( [("x", x), ("y", y)], plt.Ite( OVar("y"), plt.AddInteger(OVar("x"), plt.Integer(1)), OVar("x") ), ) elif isinstance(binop, Sub): return lambda x, y: OLet( [("x", x), ("y", y)], plt.Ite( OVar("y"), plt.SubtractInteger(OVar("x"), plt.Integer(1)), OVar("x"), ), ) if isinstance(binop, Mult): if other.typ == IntegerInstanceType: return plt.MultiplyInteger elif other.typ == ByteStringInstanceType: return lambda x, y: ByteStrIntMulImpl(y, x) elif other.typ == StringInstanceType: return lambda x, y: StrIntMulImpl(y, x) def _unop_return_type(self, unop: unaryop) -> "Type": if isinstance(unop, USub): return IntegerType() elif isinstance(unop, UAdd): return IntegerType() elif isinstance(unop, Not): return BoolType() return super()._unop_return_type(unop) def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]: if isinstance(unop, USub): return lambda x: plt.SubtractInteger(plt.Integer(0), x) if isinstance(unop, UAdd): return lambda x: x if isinstance(unop, Not): return lambda x: plt.EqualsInteger(x, plt.Integer(0)) return super()._unop_fun(unop)
Ancestors
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
AtomicType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
AtomicType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.cmp
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
AtomicType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
AtomicType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
AtomicType
.unop_type
Type of a unary operation on self.
class ListType (typ: Type)
-
ListType(typ: opshin.type_impls.Type)
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class ListType(ClassType): typ: Type def __ge__(self, other): return isinstance(other, ListType) and self.typ >= other.typ def id_map(self, skip_constructor: bool = False) -> str: return "list<" + self.typ.id_map() + ">" def attribute_type(self, attr) -> "Type": if attr == "index": return InstanceType( FunctionType(frozenlist([self.typ]), IntegerInstanceType) ) super().attribute_type(attr) def attribute(self, attr) -> plt.AST: if attr == "index": return OLambda( ["self", "x"], OLet( [("x", plt.Force(OVar("x")))], plt.Apply( plt.RecFun( OLambda( ["index", "xs", "a"], plt.IteNullList( OVar("xs"), plt.TraceError("Did not find element in list"), plt.Ite( plt.EqualsInteger( OVar("x"), plt.HeadList(OVar("xs")) ), OVar("a"), plt.Apply( OVar("index"), OVar("index"), plt.TailList(OVar("xs")), plt.AddInteger(OVar("a"), plt.Integer(1)), ), ), ), ), ), OVar("self"), plt.Integer(0), ), ), ) super().attribute(attr) def stringify(self, recursive: bool = False) -> plt.AST: return OLambda( ["self"], OLet( [ ( "g", plt.RecFun( OLambda( ["f", "l"], plt.AppendString( plt.Apply( self.typ.stringify(recursive=True), plt.HeadList(OVar("l")), ), OLet( [("t", plt.TailList(OVar("l")))], plt.IteNullList( OVar("t"), plt.Text("]"), plt.AppendString( plt.Text(", "), plt.Apply( OVar("f"), OVar("f"), OVar("t"), ), ), ), ), ), ) ), ) ], plt.AppendString( plt.Text("["), plt.IteNullList( OVar("self"), plt.Text("]"), plt.Apply( OVar("g"), OVar("self"), ), ), ), ), ) def copy_only_attributes(self) -> plt.AST: mapped_attrs = plt.MapList( OVar("self"), OLambda( ["v"], transform_ext_params_map(self.typ)( plt.Apply( self.typ.copy_only_attributes(), transform_output_map(self.typ)(OVar("v")), ) ), ), empty_list(self.typ), ) return OLambda(["self"], mapped_attrs) def _binop_return_type(self, binop: operator, other: "Type") -> "Type": if isinstance(binop, Add): if isinstance(other, InstanceType) and isinstance(other.typ, ListType): other_typ = other.typ assert ( self.typ >= other_typ.typ or other_typ.typ >= self.typ ), f"Types of lists {self.typ} and {other_typ.typ} are not compatible" return ListType( self.typ if self.typ >= other_typ.typ else other_typ.typ ) return super()._binop_return_type(binop, other) def _binop_bin_fun(self, binop: operator, other: AST): if isinstance(binop, Add): if isinstance(other.typ, InstanceType) and isinstance( other.typ.typ, ListType ): return plt.AppendList def _unop_return_type(self, unop: unaryop) -> "Type": if isinstance(unop, Not): return BoolType() return super()._unop_return_type(unop) def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]: if isinstance(unop, Not): return lambda x: plt.IteNullList(x, plt.Bool(True), plt.Bool(False)) return super()._unop_fun(unop)
Ancestors
Class variables
var typ : Type
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
ClassType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
ClassType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
ClassType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
ClassType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
ClassType
.unop_type
Type of a unary operation on self.
class PairType (l_typ: Type, r_typ: Type)
-
An internal type representing built-in PlutusData pairs
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class PairType(ClassType): """An internal type representing built-in PlutusData pairs""" l_typ: Type r_typ: Type def __ge__(self, other): return isinstance(other, PairType) and all( t >= ot for t, ot in zip((self.l_typ, self.r_typ), (other.l_typ, other.r_typ)) ) def stringify(self, recursive: bool = False) -> plt.AST: tuple_content = plt.ConcatString( plt.Apply( self.l_typ.stringify(recursive=True), transform_ext_params_map(self.l_typ)(plt.FstPair(OVar("self"))), ), plt.Text(", "), plt.Apply( self.r_typ.stringify(recursive=True), transform_ext_params_map(self.r_typ)(plt.SndPair(OVar("self"))), ), ) return OLambda( ["self"], plt.ConcatString(plt.Text("("), tuple_content, plt.Text(")")), )
Ancestors
Class variables
var l_typ : Type
var r_typ : Type
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
ClassType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
ClassType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
ClassType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
ClassType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
ClassType
.unop_type
Type of a unary operation on self.
class PolymorphicFunction (*args, **kwargs)
-
Expand source code
class PolymorphicFunction: def __new__(meta, *args, **kwargs): klass = super().__new__(meta) for key in ["impl_from_args"]: value = getattr(klass, key) wrapped = patternize(value) object.__setattr__(klass, key, wrapped) return klass def type_from_args(self, args: typing.List[Type]) -> FunctionType: raise NotImplementedError() def impl_from_args(self, args: typing.List[Type]) -> plt.AST: raise NotImplementedError()
Subclasses
Methods
def impl_from_args(self, args: List[Type]) ‑> pluthon.pluthon_ast.AST
def type_from_args(self, args: List[Type]) ‑> FunctionType
class PolymorphicFunctionInstanceType (typ: FunctionType, polymorphic_function: PolymorphicFunction)
-
PolymorphicFunctionInstanceType(typ: opshin.type_impls.FunctionType, polymorphic_function: opshin.type_impls.PolymorphicFunction)
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class PolymorphicFunctionInstanceType(InstanceType): typ: FunctionType polymorphic_function: PolymorphicFunction
Ancestors
Class variables
var polymorphic_function : PolymorphicFunction
var typ : FunctionType
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
InstanceType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
InstanceType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
InstanceType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
InstanceType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
InstanceType
.cmp
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
InstanceType
.constr
The constructor for this class
def constr_type(self) ‑> FunctionType
-
Inherited from:
InstanceType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
InstanceType
.copy_only_attributes
Pluthon function that returns a copy of only the attributes of the object
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
InstanceType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
InstanceType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
InstanceType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
InstanceType
.unop_type
Type of a unary operation on self.
class PolymorphicFunctionType (polymorphic_function: PolymorphicFunction)
-
A special type of builtin that may act differently on different parameters
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class PolymorphicFunctionType(ClassType): """A special type of builtin that may act differently on different parameters""" polymorphic_function: PolymorphicFunction def __ge__(self, other): return ( isinstance(other, PolymorphicFunctionType) and self.polymorphic_function == other.polymorphic_function )
Ancestors
Class variables
var polymorphic_function : PolymorphicFunction
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
ClassType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
ClassType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
ClassType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
ClassType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
ClassType
.unop_type
Type of a unary operation on self.
class Record (name: str, orig_name: str, constructor: int, fields: List[Tuple[str, Type]] | frozenlist2.frozenlist)
-
Record(name: str, orig_name: str, constructor: int, fields: Union[List[Tuple[str, opshin.type_impls.Type]], frozenlist2.frozenlist])
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class Record: name: str orig_name: str constructor: int fields: typing.Union[typing.List[typing.Tuple[str, Type]], frozenlist] def __post_init__(self): object.__setattr__(self, "fields", frozenlist(self.fields)) def __ge__(self, other): if not isinstance(other, Record): return False return ( self.constructor == other.constructor and len(self.fields) == len(other.fields) and all(a >= b for a, b in zip(self.fields, other.fields)) )
Class variables
var constructor : int
var fields : List[Tuple[str, Type]] | frozenlist2.frozenlist
var name : str
var orig_name : str
class RecordType (record: Record)
-
RecordType(record: opshin.type_impls.Record)
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class RecordType(ClassType): record: Record def id_map(self, skip_constructor: bool = False) -> str: return ( "cons[" + self.record.orig_name + "](" + (str(self.record.constructor) if not skip_constructor else "_") + ";" + ",".join(name + ":" + type.id_map() for name, type in self.record.fields) + ")" ) def constr_type(self) -> "InstanceType": return InstanceType( FunctionType( frozenlist([f[1] for f in self.record.fields]), InstanceType(self) ) ) def constr(self) -> plt.AST: # wrap all constructor values to PlutusData build_constr_params = plt.EmptyDataList() for n, t in reversed(self.record.fields): build_constr_params = plt.MkCons( transform_output_map(t)(plt.Force(OVar(n))), build_constr_params ) # then build a constr type with this PlutusData return SafeOLambda( [n for n, _ in self.record.fields], plt.ConstrData(plt.Integer(self.record.constructor), build_constr_params), ) def attribute_type(self, attr: str) -> Type: """The types of the named attributes of this class""" if attr == "CONSTR_ID": return IntegerInstanceType for n, t in self.record.fields: if n == attr: return t if attr == "to_cbor": return InstanceType(FunctionType(frozenlist([]), ByteStringInstanceType)) raise TypeInferenceError( f"Type {self.record.name} does not have attribute {attr}" ) def attribute(self, attr: str) -> plt.AST: """The attributes of this class. Need to be a lambda that expects as first argument the object itself""" if attr == "CONSTR_ID": # access to constructor return OLambda( ["self"], plt.Constructor(OVar("self")), ) if attr in (n for n, t in self.record.fields): attr_typ = self.attribute_type(attr) pos = next(i for i, (n, _) in enumerate(self.record.fields) if n == attr) # access to normal fields return OLambda( ["self"], transform_ext_params_map(attr_typ)( plt.ConstantNthFieldFast( OVar("self"), pos, ), ), ) if attr == "to_cbor": return OLambda( ["self", "_"], plt.SerialiseData( OVar("self"), ), ) raise NotImplementedError(f"Attribute {attr} not implemented for type {self}") def cmp(self, op: cmpop, o: "Type") -> plt.AST: """The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison.""" # this will reject comparisons that will always be false - most likely due to faults during programming if ( ( isinstance(o, RecordType) and (self.record >= o.record or o.record >= self.record) ) or ( isinstance(o, UnionType) and any(self >= o or self >= o for o in o.typs) ) or isinstance(o, AnyType) ): # Note that comparison with AnyType is actually fine because both are Data if isinstance(op, Eq): return plt.BuiltIn(uplc.BuiltInFun.EqualsData) if isinstance(op, NotEq): return OLambda( ["x", "y"], plt.Not( plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsData), OVar("x"), OVar("y"), ) ), ) if ( isinstance(o, ListType) and isinstance(o.typ, InstanceType) and (o.typ.typ >= self or self >= o.typ.typ) ): if isinstance(op, In): return OLambda( ["x", "y"], plt.AnyList( OVar("y"), plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsData), OVar("x"), ), ), ) if isinstance(op, NotIn): return OLambda( ["x", "y"], plt.Not( plt.AnyList( OVar("y"), plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsData), OVar("x"), ), ), ), ) return super().cmp(op, o) def __ge__(self, other): # Can only substitute for its own type, records need to be equal # if someone wants to be funny, they can implement <= to be true if all fields match up to some point return isinstance(other, self.__class__) and self.record >= other.record def stringify(self, recursive: bool = False) -> plt.AST: """Returns a stringified version of the object""" map_fields = plt.Text(")") if self.record.fields: # TODO access to fields is a bit inefficient but this is debugging stuff only anyways pos = len(self.record.fields) - 1 for field_name, field_type in reversed(self.record.fields[1:]): map_fields = plt.ConcatString( plt.Text(f", {field_name}="), plt.Apply( field_type.stringify(recursive=True), transform_ext_params_map(field_type)( plt.ConstantNthFieldFast(OVar("self"), pos) ), ), map_fields, ) pos -= 1 map_fields = plt.ConcatString( plt.Text(f"{self.record.fields[0][0]}="), plt.Apply( self.record.fields[0][1].stringify(recursive=True), transform_ext_params_map(self.record.fields[0][1])( plt.ConstantNthFieldFast(OVar("self"), pos) ), ), map_fields, ) return OLambda( ["self"], plt.AppendString(plt.Text(f"{self.record.orig_name}("), map_fields), ) def copy_only_attributes(self) -> plt.AST: copied_attributes = plt.EmptyDataList() for attr_name, attr_type in reversed(self.record.fields): copied_attributes = OLet( [ ("f", plt.HeadList(OVar("fs"))), ("fs", plt.TailList(OVar("fs"))), ], plt.MkCons( transform_output_map(attr_type)( plt.Apply( attr_type.copy_only_attributes(), transform_ext_params_map(attr_type)( OVar("f"), ), ) ), copied_attributes, ), ) copied_attributes = OLet( [("fs", plt.Fields(OVar("self")))], copied_attributes, ) return OLambda( ["self"], plt.ConstrData( plt.Integer(self.record.constructor), copied_attributes, ), )
Ancestors
Class variables
var record : Record
Methods
def attribute(self, attr: str) ‑> pluthon.pluthon_ast.AST
-
The attributes of this class. Need to be a lambda that expects as first argument the object itself
def attribute_type(self, attr: str) ‑> Type
-
Inherited from:
ClassType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
ClassType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
ClassType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
ClassType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Returns a stringified version of the object
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
ClassType
.unop_type
Type of a unary operation on self.
class StrImpl (*args, **kwargs)
-
Expand source code
class StrImpl(PolymorphicFunction): def type_from_args(self, args: typing.List[Type]) -> FunctionType: assert ( len(args) == 1 ), f"'str' takes only one argument, but {len(args)} were given" typ = args[0] assert isinstance(typ, InstanceType), "Can only stringify instances" return FunctionType(args, StringInstanceType) def impl_from_args(self, args: typing.List[Type]) -> plt.AST: arg = args[0] assert isinstance(arg, InstanceType), "Can only stringify instances" return arg.typ.stringify()
Ancestors
Methods
def impl_from_args(self, args: List[Type]) ‑> pluthon.pluthon_ast.AST
def type_from_args(self, args: List[Type]) ‑> FunctionType
class StringType
-
StringType()
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class StringType(AtomicType): def constr_type(self) -> InstanceType: return InstanceType(PolymorphicFunctionType(StrImpl())) def attribute_type(self, attr) -> Type: if attr == "encode": return InstanceType(FunctionType(frozenlist([]), ByteStringInstanceType)) return super().attribute_type(attr) def attribute(self, attr) -> plt.AST: if attr == "encode": # No codec -> only the default (utf8) is allowed return OLambda(["x", "_"], plt.EncodeUtf8(OVar("x"))) return super().attribute(attr) def cmp(self, op: cmpop, o: "Type") -> plt.AST: if isinstance(o, StringType): if isinstance(op, Eq): return plt.BuiltIn(uplc.BuiltInFun.EqualsString) if isinstance(op, NotEq): return OLambda( ["x", "y"], plt.Not(plt.EqualsString(OVar("x"), OVar("y"))) ) return super().cmp(op, o) def stringify(self, recursive: bool = False) -> plt.AST: if recursive: # TODO this is not correct, as the string is not properly escaped return OLambda( ["self"], plt.ConcatString(plt.Text("'"), OVar("self"), plt.Text("'")), ) else: return OLambda(["self"], OVar("self")) def _binop_return_type(self, binop: operator, other: "Type") -> "Type": if isinstance(binop, Add): if other == StringInstanceType: return StringType() if isinstance(binop, Mult): if other == IntegerInstanceType: return StringType() return super().binop_type(binop, other) def _binop_bin_fun(self, binop: operator, other: AST): if isinstance(binop, Add): if other.typ == StringInstanceType: return plt.AppendString if isinstance(binop, Mult): if other.typ == IntegerInstanceType: return StrIntMulImpl def _unop_return_type(self, unop: unaryop) -> "Type": if isinstance(unop, Not): return BoolType() return super()._unop_return_type(unop) def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]: if isinstance(unop, Not): return lambda x: plt.EqualsInteger( plt.LengthOfByteString(plt.EncodeUtf8(x)), plt.Integer(0) ) return super()._unop_fun(unop)
Ancestors
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
AtomicType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
AtomicType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.cmp
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
AtomicType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
AtomicType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
AtomicType
.unop_type
Type of a unary operation on self.
class TupleType (typs: List[Type])
-
TupleType(typs: List[opshin.type_impls.Type])
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class TupleType(ClassType): typs: typing.List[Type] def __ge__(self, other): return isinstance(other, TupleType) and all( t >= ot for t, ot in zip(self.typs, other.typs) ) def stringify(self, recursive: bool = False) -> plt.AST: if not self.typs: return OLambda( ["self"], plt.Text("()"), ) elif len(self.typs) == 1: tuple_content = plt.ConcatString( plt.Apply( self.typs[0].stringify(recursive=True), plt.FunctionalTupleAccess(OVar("self"), 0, len(self.typs)), ), plt.Text(","), ) else: tuple_content = plt.ConcatString( plt.Apply( self.typs[0].stringify(recursive=True), plt.FunctionalTupleAccess(OVar("self"), 0, len(self.typs)), ), ) for i, t in enumerate(self.typs[1:], start=1): tuple_content = plt.ConcatString( tuple_content, plt.Text(", "), plt.Apply( t.stringify(recursive=True), plt.FunctionalTupleAccess(OVar("self"), i, len(self.typs)), ), ) return OLambda( ["self"], plt.ConcatString(plt.Text("("), tuple_content, plt.Text(")")), ) def _binop_return_type(self, binop: operator, other: "Type") -> "Type": if isinstance(binop, Add): if isinstance(other, TupleType): return TupleType(self.typs + other.typs) return super()._binop_return_type(binop, other)
Ancestors
Class variables
var typs : List[Type]
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
ClassType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
ClassType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
ClassType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
ClassType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
ClassType
.unop_type
Type of a unary operation on self.
class Type (*args, **kwargs)
-
Expand source code
class Type: def __new__(meta, *args, **kwargs): klass = super().__new__(meta) for key in ["constr", "attribute", "cmp", "stringify", "copy_only_attributes"]: value = getattr(klass, key) wrapped = patternize(value) object.__setattr__(klass, key, wrapped) return klass def constr_type(self) -> "InstanceType": """The type of the constructor for this class""" raise TypeInferenceError( f"Object of type {self.__class__} does not have a constructor" ) def constr(self) -> plt.AST: """The constructor for this class""" raise NotImplementedError( f"Constructor of {type(self).__name__} not implemented" ) def attribute_type(self, attr) -> "Type": """The types of the named attributes of this class""" raise TypeInferenceError( f"Object of type {type(self).__name__} does not have attribute {attr}" ) def attribute(self, attr) -> plt.AST: """The attributes of this class. Needs to be a lambda that expects as first argument the object itself""" raise NotImplementedError(f"Attribute {attr} not implemented for type {self}") def cmp(self, op: cmpop, o: "Type") -> plt.AST: """The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison.""" raise NotImplementedError( f"Comparison {type(op).__name__} for {self.__class__.__name__} and {o.__class__.__name__} is not implemented. This is likely intended because it would always evaluate to False." ) def stringify(self, recursive: bool = False) -> plt.AST: """ Returns a stringified version of the object The recursive parameter informs the method whether it was invoked recursively from another invokation """ raise NotImplementedError(f"{type(self).__name__} can not be stringified") def copy_only_attributes(self) -> plt.AST: """ Pluthon function that returns a copy of only the attributes of the object """ raise NotImplementedError(f"{type(self).__name__} can not be copied") def binop_type(self, binop: operator, other: "Type") -> "Type": """ Type of a binary operation between self and other. """ return FunctionType( [InstanceType(self), InstanceType(other)], InstanceType(self._binop_return_type(binop, other)), ) def _binop_return_type(self, binop: operator, other: "Type") -> "Type": """ Return the type of a binary operation between self and other """ raise NotImplementedError( f"{type(self).__name__} does not implement {binop.__class__.__name__}" ) def binop(self, binop: operator, other: AST) -> plt.AST: """ Implements a binary operation between self and other """ return OLambda( ["self", "other"], self._binop_bin_fun(binop, other)(OVar("self"), OVar("other")), ) def _binop_bin_fun( self, binop: operator, other: AST ) -> Callable[[plt.AST, plt.AST], plt.AST]: """ Returns a binary function that implements the binary operation between self and other. """ raise NotImplementedError( f"{type(self).__name__} can not be used with operation {binop.__class__.__name__}" ) def unop_type(self, unop: unaryop) -> "Type": """ Type of a unary operation on self. """ return FunctionType( [InstanceType(self)], InstanceType(self._unop_return_type(unop)), ) def _unop_return_type(self, unop: unaryop) -> "Type": """ Return the type of a binary operation between self and other """ raise NotImplementedError( f"{type(self).__name__} does not implement {unop.__class__.__name__}" ) def unop(self, unop: unaryop) -> plt.AST: """ Implements a unary operation on self """ return OLambda( ["self"], self._unop_fun(unop)(OVar("self")), ) def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]: """ Returns a unary function that implements the unary operation on self. """ raise NotImplementedError( f"{type(self).__name__} can not be used with operation {unop.__class__.__name__}" ) def id_map(self, skip_constructor: bool = False) -> str: """ Returns a map from the constructor id to a descriptive typestring """ raise NotImplementedError(f"Type {type(self).__name__} does not have a id map")
Subclasses
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison.
def constr(self) ‑> pluthon.pluthon_ast.AST
-
The constructor for this class
def constr_type(self) ‑> InstanceType
-
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Pluthon function that returns a copy of only the attributes of the object
def id_map(self, skip_constructor: bool = False) ‑> str
-
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Returns a stringified version of the object
The recursive parameter informs the method whether it was invoked recursively from another invokation
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Type of a unary operation on self.
class TypeInferenceError (*args, **kwargs)
-
Assertion failed.
Expand source code
class TypeInferenceError(AssertionError): pass
Ancestors
- builtins.AssertionError
- builtins.Exception
- builtins.BaseException
class UnionType (typs: List[RecordType])
-
UnionType(typs: List[opshin.type_impls.RecordType])
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class UnionType(ClassType): typs: typing.List[RecordType] def __post_init__(self): object.__setattr__(self, "typs", frozenlist(self.typs)) def id_map(self, skip_constructor: bool = False) -> str: return "union<" + ",".join(t.id_map() for t in self.typs) + ">" def attribute_type(self, attr) -> "Type": if attr == "CONSTR_ID": return IntegerInstanceType # need to have a common field with the same name if all(attr in (n for n, t in x.record.fields) for x in self.typs): attr_types = OrderedSet( t for x in self.typs for n, t in x.record.fields if n == attr ) for at in attr_types: # return the maximum element if there is one if all(at >= at2 for at2 in attr_types): return at # return the union type of all possible instantiations if all possible values are record types if all( isinstance(at, InstanceType) and isinstance(at.typ, RecordType) for at in attr_types ) and distinct([at.typ.record.constructor for at in attr_types]): return InstanceType( UnionType(frozenlist([at.typ for at in attr_types])) ) # return Anytype return InstanceType(AnyType()) if attr == "to_cbor": return InstanceType(FunctionType(frozenlist([]), ByteStringInstanceType)) raise TypeInferenceError( f"Can not access attribute {attr} of Union type. Cast to desired type with an 'if isinstance(_, _):' branch." ) def attribute(self, attr: str) -> plt.AST: if attr == "CONSTR_ID": # access to constructor return OLambda( ["self"], plt.Constructor(OVar("self")), ) # iterate through all names/types of the unioned records by position if any(attr in (n for n, t in r.record.fields) for r in self.typs): attr_typ = self.attribute_type(attr) pos_constrs = [ (i, x.record.constructor) for x in self.typs for i, (n, t) in enumerate(x.record.fields) if n == attr ] pos_constrs = sorted(pos_constrs, key=lambda x: x[0]) pos_constrs = [ (pos, [c[1] for c in constrs]) for (pos, constrs) in itertools.groupby(pos_constrs, key=lambda x: x[0]) ] # largest group last so we save the comparisons for that pos_constrs = sorted(pos_constrs, key=lambda x: len(x[1])) # access to normal fields if not pos_constrs: pos_decisor = plt.TraceError("Invalid constructor") else: pos_decisor = plt.ConstantNthFieldFast(OVar("self"), pos_constrs[-1][0]) pos_constrs = pos_constrs[:-1] # constr is not needed when there is only one position for all constructors if not pos_constrs: return OLambda( ["self"], transform_ext_params_map(attr_typ)( pos_decisor, ), ) for pos, constrs in pos_constrs: assert constrs, "Found empty constructors for a position" constr_check = plt.EqualsInteger( OVar("constr"), plt.Integer(constrs[0]) ) for constr in constrs[1:]: constr_check = plt.Or( plt.EqualsInteger(OVar("constr"), plt.Integer(constr)), constr_check, ) pos_decisor = plt.Ite( constr_check, plt.ConstantNthFieldFast(OVar("self"), pos), pos_decisor, ) return OLambda( ["self"], transform_ext_params_map(attr_typ)( OLet( [("constr", plt.Constructor(OVar("self")))], pos_decisor, ), ), ) if attr == "to_cbor": return OLambda( ["self", "_"], plt.SerialiseData( OVar("self"), ), ) raise NotImplementedError(f"Attribute {attr} not implemented for type {self}") def __ge__(self, other): if isinstance(other, UnionType): return all(self >= ot for ot in other.typs) return any(t >= other for t in self.typs) def cmp(self, op: cmpop, o: "Type") -> plt.AST: """The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second the comparison.""" # this will reject comparisons that will always be false - most likely due to faults during programming # note we require that there is an overlapt between the possible types for unions if (isinstance(o, RecordType) and any(t >= o or o >= t for t in self.typs)) or ( isinstance(o, UnionType) and any(t >= ot or t >= ot for t in self.typs for ot in o.typs) ): if isinstance(op, Eq): return plt.BuiltIn(uplc.BuiltInFun.EqualsData) if isinstance(op, NotEq): return OLambda( ["x", "y"], plt.Not( plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsData), OVar("x"), OVar("y"), ) ), ) if ( isinstance(o, ListType) and isinstance(o.typ, InstanceType) and any(o.typ.typ >= t or t >= o.typ.typ for t in self.typs) ): if isinstance(op, In): return OLambda( ["x", "y"], plt.AnyList( OVar("y"), plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsData), OVar("x"), ), ), ) if isinstance(op, NotIn): return OLambda( ["x", "y"], plt.Not( plt.AnyList( OVar("y"), plt.Apply( plt.BuiltIn(uplc.BuiltInFun.EqualsData), OVar("x"), ), ), ), ) raise NotImplementedError( f"Can not compare {o} and {self} with operation {op.__class__}. Note that comparisons that always return false are also rejected." ) def stringify(self, recursive: bool = False) -> plt.AST: decide_string_func = plt.TraceError("Invalid constructor id in Union") for t in self.typs: decide_string_func = plt.Ite( plt.EqualsInteger(OVar("c"), plt.Integer(t.record.constructor)), t.stringify(recursive=True), decide_string_func, ) return OLambda( ["self"], OLet( [("c", plt.Constructor(OVar("self")))], plt.Apply(decide_string_func, OVar("self")), ), ) def copy_only_attributes(self) -> plt.AST: copied_attributes = plt.TraceError( f"Invalid CONSTR_ID for instance of Union[{', '.join(type(typ).__name__ for typ in self.typs)}]" ) for typ in self.typs: copied_attributes = plt.Ite( plt.EqualsInteger(OVar("constr"), plt.Integer(typ.record.constructor)), plt.Apply(typ.copy_only_attributes(), OVar("self")), copied_attributes, ) return OLambda( ["self"], OLet( [("constr", plt.Constructor(OVar("self")))], copied_attributes, ), )
Ancestors
Class variables
var typs : List[RecordType]
Methods
def attribute(self, attr: str) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
ClassType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
ClassType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
ClassType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
ClassType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
ClassType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
ClassType
.unop_type
Type of a unary operation on self.
class UnitType
-
UnitType()
Expand source code
@dataclass(frozen=True, unsafe_hash=True) class UnitType(AtomicType): def cmp(self, op: cmpop, o: "Type") -> plt.AST: if isinstance(o, UnitType): if isinstance(op, Eq): return OLambda(["x", "y"], plt.Bool(True)) if isinstance(op, NotEq): return OLambda(["x", "y"], plt.Bool(False)) return super().cmp(op, o) def stringify(self, recursive: bool = False) -> plt.AST: return OLambda(["self"], plt.Text("None")) def _unop_return_type(self, unop: unaryop) -> "Type": if isinstance(unop, Not): return BoolType() return super()._unop_return_type(unop) def _unop_fun(self, unop: unaryop) -> Callable[[plt.AST], plt.AST]: if isinstance(unop, Not): return lambda x: plt.Bool(True) return super()._unop_fun(unop)
Ancestors
Methods
def attribute(self, attr) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.attribute
The attributes of this class. Needs to be a lambda that expects as first argument the object itself
def attribute_type(self, attr) ‑> Type
-
Inherited from:
AtomicType
.attribute_type
The types of the named attributes of this class
def binop(self, binop: ast.operator, other: ast.AST) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.binop
Implements a binary operation between self and other
def binop_type(self, binop: ast.operator, other: Type) ‑> Type
-
Inherited from:
AtomicType
.binop_type
Type of a binary operation between self and other.
def cmp(self, op: ast.cmpop, o: Type) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.cmp
The implementation of comparing this type to type o via operator op. Returns a lambda that expects as first argument the object itself and as second …
def constr(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.constr
The constructor for this class
def constr_type(self) ‑> InstanceType
-
Inherited from:
AtomicType
.constr_type
The type of the constructor for this class
def copy_only_attributes(self) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.copy_only_attributes
Returns a copy of this type with only the declared attributes (mapped to builtin values, thus checking atomic types too). For anything but record …
def id_map(self, skip_constructor: bool = False) ‑> str
-
Inherited from:
AtomicType
.id_map
Returns a map from the constructor id to a descriptive typestring
def stringify(self, recursive: bool = False) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.stringify
Returns a stringified version of the object …
def unop(self, unop: ast.unaryop) ‑> pluthon.pluthon_ast.AST
-
Inherited from:
AtomicType
.unop
Implements a unary operation on self
def unop_type(self, unop: ast.unaryop) ‑> Type
-
Inherited from:
AtomicType
.unop_type
Type of a unary operation on self.